Abstract
Abstract. Multi-spacecraft missions allow the gradient of important physical quantities in the terrestrial environment to be determined. The gradient can be computed from four simultaneous measurements in a straightforward way, but this computation does not produce proper error estimates, making it hard to assess the meaningfulness of the result. Recently developed least-squares gradient computation techniques offer the possibility to obtain more precise results with all-inclusive error estimates, provided that information about the non-linearity of the space and time variations of the observed quantity is given. The present paper describes several heuristics for estimating these variations, thereby enabling a fully automatic computation of the gradient and the associated error estimates. The performance of these heuristics is illustrated with synthetic data corresponding to 4- and 10-spacecraft configurations.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献