Polar observations of ion/electron bursts at the pre-dawn polar cap boundary: evidence for internal reconnection of overdraped lobe flux

Author:

Sandholt P. E.,Farrugia C. J.

Abstract

Abstract. Observations made by Polar of ion-electron bursts on the dawn side of the polar cap are presented. They occurred when conditions external to the magnetosphere corresponded to that of the sheath region of a magnetic cloud, which was characterized by very high densities/dynamic pressure and a magnetic field which was strong in all components and which was tilted antisunward (Bx<0) and northward (Bz>0) with its clock angle lying between 20 and 90° (By: 8–15 nT). A clear temporal development in the energy range spanned by the individual ion bursts (from 0.2–2 keV to 1–10 keV) was present. We relate this to a corresponding temporal evolution in the cloud sheath field and plasma. We analyze the solar wind-magnetosphere aspects of the observations using the concepts of (i) (i) overdraped lobe flux, (ii) Bx- and By-regulated sequential reconnections in opposite hemispheres (magnetopause and internal modes), and (iii) newly-closed magnetic flux. In particular, we find that the most energetic ion bursts (accompanied by bi-directionally streaming electrons at 1–10 keV and intense magnetosheath-origin fluxes) are located on newly closed field lines generated by internal reconnection occurring between overdraped lobe field lines and the closed geomagnetic field. This result corroborates a topology of lobe reconnection under conditions of dipole tilt and/or nonzero IMF Bx component advanced by Watanabe et al. (2006), which in our case is adapted to nonzero IMF By conditions.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3