Polar observations of ion/electron bursts at the pre-dawn polar cap boundary: evidence for internal reconnection of overdraped lobe flux
-
Published:2008-08-04
Issue:8
Volume:26
Page:2191-2202
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Sandholt P. E.,Farrugia C. J.
Abstract
Abstract. Observations made by Polar of ion-electron bursts on the dawn side of the polar cap are presented. They occurred when conditions external to the magnetosphere corresponded to that of the sheath region of a magnetic cloud, which was characterized by very high densities/dynamic pressure and a magnetic field which was strong in all components and which was tilted antisunward (Bx<0) and northward (Bz>0) with its clock angle lying between 20 and 90° (By: 8–15 nT). A clear temporal development in the energy range spanned by the individual ion bursts (from 0.2–2 keV to 1–10 keV) was present. We relate this to a corresponding temporal evolution in the cloud sheath field and plasma. We analyze the solar wind-magnetosphere aspects of the observations using the concepts of (i) (i) overdraped lobe flux, (ii) Bx- and By-regulated sequential reconnections in opposite hemispheres (magnetopause and internal modes), and (iii) newly-closed magnetic flux. In particular, we find that the most energetic ion bursts (accompanied by bi-directionally streaming electrons at 1–10 keV and intense magnetosheath-origin fluxes) are located on newly closed field lines generated by internal reconnection occurring between overdraped lobe field lines and the closed geomagnetic field. This result corroborates a topology of lobe reconnection under conditions of dipole tilt and/or nonzero IMF Bx component advanced by Watanabe et al. (2006), which in our case is adapted to nonzero IMF By conditions.
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics