Complexity in the scaling of velocity fluctuations in the high-latitude F-region ionosphere

Author:

Parkinson M. L.

Abstract

Abstract. The temporal scaling properties of F-region velocity fluctuations, δvlos, were characterised over 17 octaves of temporal scale from τ=1 s to <1 day using a new data base of 1-s time resolution SuperDARN radar measurements. After quality control, 2.9 (1.9) million fluctuations were recorded during 31.5 (40.4) days of discretionary mode soundings using the Tasmanian (New Zealand) radars. If the fluctuations were statistically self-similar, the probability density functions (PDFs) of δvlos would collapse onto the same PDF using the scaling Ps (δvs, τ)=ταP (δvlos, τ) and δvs=δvlosτ−α where α is the scaling exponent. The variations in scaling exponents α and multi-fractal behaviour were estimated using peak scaling and generalised structure function (GSF) analyses, and a new method based upon minimising the differences between re-scaled probability density functions (PDFs). The efficiency of this method enabled calculation of "α spectra", the temporal spectra of scaling exponents from τ=1 s to ~2048 s. The large number of samples enabled calculation of α spectra for data separated into 2-h bins of MLT as well as two main physical regimes: Population A echoes with Doppler spectral width <75 m s−1 concentrated on closed field lines, and Population B echoes with spectral width >150 m s−1 concentrated on open field lines. For all data there was a scaling break at τ~10 s and the similarity of the fluctuations beneath this scale may be related to the large spatial averaging (~100 km×45 km) employed by SuperDARN radars. For Tasmania Population B, the velocity fluctuations exhibited approximately mono fractal power law scaling between τ~8 s and 2048 s (34 min), and probably up to several hours. The scaling exponents were generally less than that expected for basic MHD turbulence (α=0.25), except close to magnetic dusk where they peaked towards the basic MHD value. For Population A, the scaling exponents were larger than for Population B, having values generally in the range expected for basic MHD and Kolmogorov turbulence (α=0.25–0.33). The α spectra exhibited complicated variations with MLT and τ which must be related to different physical processes exerting more or less influence.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference50 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3