Testing different decoupling coefficients with measurements and models of contrasting canopies and soil water conditions

Author:

Goldberg V.,Bernhofer C.

Abstract

Abstract. Four different approaches for the calculation of the well established decoupling coefficient Ω are compared using measurements at three experimental sites (Tharandt – spruce forest, Grillenburg and Melpitz – grass) and simulations from the soil-vegetation boundary layer model HIRVAC. These investigations aimed to quantify differences between the calculation routines regarding their ability to describe the vegetation-atmosphere coupling of grass and forest with and without water stress. The model HIRVAC used is a vertically highly resolved atmospheric boundary layer model, which includes vegetation. It is coupled with a single-leaf gas exchange model to simulate physiologically based reactions of different vegetation types to changing atmospheric conditions. A multilayer soil water module and a functional parameterisation are the base in order to link the stomata reaction of the gas exchange model to the change of soil water. The omega factor was calculated for the basic formulation according to McNaughton and Jarvis (1983) and three modifications. To compare measurements and simulations for the above mentioned spruce and grass sites, the summer period 2007 as well as a dry period in June 2000 were used. Additionally a developing water stress situation for three forest canopies (spruce, pine and beech) and for a grass site was simulated. The results showed large differences between the different omega approaches which depend on the vegetation type and the soil moisture. Between the omega values, which were calculated by the used approach, the ranking was always the same not only for the measurements but also for the adapted simulations. The lowest values came from the first modification including doubling factors and summands in all parts of omega equation in relation to the original approach. And the highest values were calculated with the second modification missing one doubling factor in the denominator of the omega equation. For example, the averages of omega ranged in the summer period 2007 from 0.11 to 0.19 for the spruce site and moderate soil wetness and from 0.42 to 0.58 for the grass site and higher soil wetness. In the case of the simulated drying out of four different canopies the forest stands showed a similar change of omega from about 0.65 (moderate soil wetness) to 0.1 (low soil wetness). The absolute change of omega for the grass canopy was smaller than for the forest canopies (on average from 0.95 to 0.7). But the differences between the used omega approaches increased. Especially the results from the longer period in summer 2007 demonstrate that the various modifications of the decoupling coefficient lead to a change in the long-term quantity of omega. This has, for example, consequences for the description of the coupling of heterogeneous landscapes.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3