A statistical approach for identifying the ionospheric footprint of magnetospheric boundaries from SuperDARN observations

Author:

Lointier G.,Dudok de Wit T.,Hanuise C.,Vallières X.,Villain J.-P.

Abstract

Abstract. Identifying and tracking the projection of magnetospheric regions on the high-latitude ionosphere is of primary importance for studying the Solar Wind-Magnetosphere-Ionosphere system and for space weather applications. By its unique spatial coverage and temporal resolution, the Super Dual Auroral Radar Network (SuperDARN) provides key parameters, such as the Doppler spectral width, which allows the monitoring of the ionospheric footprint of some magnetospheric boundaries in near real-time. In this study, we present the first results of a statistical approach for monitoring these magnetospheric boundaries. The singular value decomposition is used as a data reduction tool to describe the backscattered echoes with a small set of parameters. One of these is strongly correlated with the Doppler spectral width, and can thus be used as a proxy for it. Based on this, we propose a Bayesian classifier for identifying the spectral width boundary, which is classically associated with the Polar Cap boundary. The results are in good agreement with previous studies. Two advantages of the method are: the possibility to apply it in near real-time, and its capacity to select the appropriate threshold level for the boundary detection.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3