Rotational temperature of N<sub>2</sub><sup>+</sup> (0,2) ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

Author:

Jokiaho O.,Lanchester B. S.,Ivchenko N.,Daniell G. J.,Miller L. C. H.,Lummerzheim D.

Abstract

Abstract. High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES) which forms part of the Spectrographic Imaging Facility (SIF), located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2), which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm) allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR). Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K) and the energy lowest (1 keV). In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular attention to errors in measurement and fitting, and background subtraction.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference35 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short Wave Infrared Imaging for Auroral Physics and Aeronomy Studies;Journal of Astronomy and Space Sciences;2024-06

2. High‐Resolution Optical Observations of Neutral Heating Associated With the Electrodynamics of an Auroral Arc;Journal of Geophysical Research: Space Physics;2019-11

3. Neutral temperature and atmospheric water vapour retrieval from spectral fitting of auroral and airglow emissions;Geoscientific Instrumentation, Methods and Data Systems;2018-11-30

4. RELATIVE BRIGHTNESS OF THE O+(2D-2P) DOUBLETS IN LOW-ENERGY AURORAE;The Astrophysical Journal;2014-11-24

5. Modelling N21P contamination in auroral O+ emissions;Journal of Atmospheric and Solar-Terrestrial Physics;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3