Analysis of relationships between ultraviolet radiation (295–385 nm) and aerosols as well as shortwave radiation in North China Plain

Author:

Xia X.,Li Z.,Wang P.,Cribb M.,Chen H.,Zhao Y.

Abstract

Abstract. The fraction of ultraviolet (UV) radiation to broadband shortwave (SW) radiation (FUV=UV/SW) and the influences of aerosol, precipitable water vapor content (PWV) and snow on FUV were examined using two year's worth of ground-based measurements of relevant variables in northern China. The annual mean FUV was 3.85%. Larger monthly values occurred in summer and minimum appeared in winter. Under cloudless condition, FUV decreased linearly with τ500 nm and the resulting regression indicated a reduction of about 26% in daily FUV per unit τ500 nm, implying that aerosol is an efficient agent in lowering the ground-level UV radiation, especially when the sun is high. Given that the annual mean τ500 nm is 0.82, aerosol induced reduction in surface UV radiation was from 24% to 74% when the solar zenith angle (θ) changed from 20° to 80°. One cm of PWV led to an increase of about 17% in daily FUV. One case study of snow influence on surface irradiance showed that UV and SW radiation increased simultaneously when the ground was covered with snow, but SW radiation increased much less than UV radiation. Accordingly, FUV increased by 20% for this case. Models were developed to describe the dependence of instantaneous UV radiation on aerosol optical depth, the cosine of the solar zenith angle (μ), and clearness index (Kt) under both clear and all-weather conditions.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference34 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3