Abstract
Abstract. A close association between eruptive prominences and CMEs, both slow and fast CMEs, was reported in many studies. Sometimes it was possible to follow the material motion starting from the prominence (filament) activation to the CME in the high corona. Remnants of the prominence were found in the bright core of the CME. However, detailed comparisons of the two phenomena reveal problems in explaining CMEs as a continuation of filament eruptions in the upper corona. For example, the heliolatitudes of the disappeared filaments and subsequent coronal ejections sometimes differ by tens of degrees. In order to clear up the problems appearing when considering this association EP-CME, we tentatively analyse the more general question of the dynamics of the generic magnetic flux rope. Prominences and filaments are the best tracers of the flux ropes in the corona long before the beginning of the eruption. A twisted flux rope is held by the tension of field lines of photospheric sources until parameters of the system reach critical values and a catastrophe happens. We suggest that the associated flux rope height above the photosphere is one of these parameters and that it is revealed by the measured height of the filament. 80 filaments were analysed and we found that eruptive prominences were near the so-called limit of stability a few days before their eruptions. We suggest that a comparison of actual heights of prominences with the calculated critical heights from magnetograms could be systematically used to predict filament eruptions and the corresponding CMEs.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献