Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries

Author:

Wang ChongyangORCID,Wang Li,Wang Danni,Li Dan,Zhou Chenghu,Jiang Hao,Zheng Qiong,Chen Shuisen,Jia Kai,Liu YangxiaoyueORCID,Yang Ji,Zhou Xia,Li Yong

Abstract

Abstract. An efficient recognition and extraction of the estuarine turbidity maximum zone (TMZ) is important for studying terrestrial hydrological processes. Although many studies relevant to the TMZ have been conducted worldwide, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. To improve the applicability of the methods adopted in previous studies and to develop a novel model to accurately extract the TMZ in multiple estuaries and different seasons from remote-sensing imageries, this study estimated the total suspended solid (TSS) and chlorophyll a (Chl a) concentrations in three estuaries. These were the Pearl River estuary (PRE), the Hanjiang River estuary (HRE), and the Moyangjiang River estuary (MRE) of Guangdong Province, China. The spatial distribution characteristics of the TSS and Chl a concentrations were analyzed. A nearly opposite association was found between the TSS and Chl a concentrations in the three estuaries, particularly in the PRE. The regions with high (low) TSS concentrations had relatively low (high) Chl a concentrations and, therefore, a turbidity maximum zone index (TMZI), defined as the ratio of the difference and sum of the logarithmic transformation of the TSS and Chl a concentrations, was firstly proposed. By calculating the TMZI values in the PRE on 20 November 2004 (low-flow season), it was found that the criterion TMZI>0.2 could be used to identify the TMZs of the PRE effectively. The TMZ extraction results were generally consistent with the visual-interpretation results. The area-based accuracy measures showed that the quality (Q) of the extraction reached 0.8429. The same criterion was applied in the PRE on 18 October 2015 (high-flow season), and high accuracy and consistency across seasons were observed (Q=0.8171). The western shoal of the PRE was the main distribution area of TMZs. Extracting TMZs by the newly proposed index performed well in different estuaries and on different dates (HRE on 13 August 2008 in the high-flow season and MRE on 6 December 2013 in the low-flow season). Compared to the previous fixed threshold of TSS or turbidity methods, extracting the TMZ using the TMZI had higher accuracy and better applicability (Q: 0.1046–0.4770 vs. 0.8171–0.8429). Evidently, this unified TMZI is potentially an optimized method for the global monitoring and extraction of TMZs of estuaries from different satellite remote-sensing imageries. It can be used to help the understanding of the spatial and temporal variation in TMZs and estuarine processes at regional and global scales as well as improve the management and sustainable development of regional society and the natural environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Innovative and Entrepreneurial Research Team Program

Guangdong Academy of Sciences

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3