An analytical model of the evolution of a Stokes wave and its two Benjamin–Feir sidebands on nonuniform unidirectional current

Author:

Shugan I. V.,Hwung H. H.,Yang R. Y.

Abstract

Abstract. An analytical weakly nonlinear model of the Benjamin–Feir instability of a Stokes wave on nonuniform unidirectional current is presented. The model describes evolution of a Stokes wave and its two main sidebands propagating on a slowly varying steady current. In contrast to the models based on versions of the cubic Schrödinger equation, the current variations could be strong, which allows us to examine the blockage and consider substantial variations of the wave numbers and frequencies of interacting waves. The spatial scale of the current variation is assumed to have the same order as the spatial scale of the Benjamin–Feir (BF) instability. The model includes wave action conservation law and nonlinear dispersion relation for each of the wave's triad. The effect of nonuniform current, apart from linear transformation, is in the detuning of the resonant interactions, which strongly affects the nonlinear evolution of the system. The modulation instability of Stokes waves in nonuniform moving media has special properties. Interaction with countercurrent accelerates the growth of sideband modes on a short spatial scale. An increase in initial wave steepness intensifies the wave energy exchange accompanied by wave breaking dissipation, resulting in asymmetry of sideband modes and a frequency downshift with an energy transfer jump to the lower sideband mode, and depresses the higher sideband and carrier wave. Nonlinear waves may even overpass the blocking barrier produced by strong adverse current. The frequency downshift of the energy peak is permanent and the system does not revert to its initial state. We find reasonable correspondence between the results of model simulations and available experimental results for wave interaction with blocking opposing current. Large transient or freak waves with amplitude and steepness several times those of normal waves may form during temporal nonlinear focusing of the waves accompanied by energy income from sufficiently strong opposing current. We employ the model for the estimation of the maximum amplification of wave amplitudes as a function of opposing current value and compare the result obtained with recently published experimental results and modeling results obtained with the nonlinear Schrödinger equation.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3