What do we learn on bromoform transport and chemistry in deep convection from fine scale modelling?

Author:

Marécal V.,Pirre M.,Krysztofiak G.,Josse B.

Abstract

Abstract. Bromoform is one of the main sources of halogenated Very Short-Lived Species (VSLS) that possibly contributes when degradated to the inorganic halogen loading in the stratosphere. Because of its short lifetime of about four weeks, its pathway to the stratosphere is mainly the transport by convection up to the tropical tropopause layer (TTL) and then by radiative ascent in the low stratosphere. Some of its degradation product gases (PGs) that are soluble can be scavenged and not reach the TTL. In this paper we present a detailed modelling study of the transport and the degradation of bromoform and its PGs in convection. We use a 3-D-cloud resolving model coupled with a chemistry model including gaseous and aqueous chemistry. We run idealised simulations up to 10 days, initialised using a tropical radiosounding for atmospheric conditions and using outputs from a global chemistry-transport model for chemical species. Bromoform is initialised only in the low levels. The first simulation is run with stable atmospheric conditions. It shows that the sum of the bromoform and its PGs significantly decreases with time because of dry deposition and that PGs are mainly in the form of HBr after 2 days of simulation. The other simulation is similar to the first simulation but includes perturbations of temperature and of moisture leading to the development of a convective cloud reaching the TTL. Results of this simulation show an efficient vertical transport of the bromoform from the boundary layer in the upper troposphere and TTL (mixing ratio up to 45% of the initial boundary layer mixing ratio). The organic PGs, which are for the most abundant of them not very soluble, are also uplifted efficiently. For the inorganic PGs, which are more abundant than organic PGs, their mixing ratios in the upper troposphere and in the TTL depend on the partitioning between inorganic soluble and inorganic non soluble species in the convective cloud. Important soluble species such as HBr and HOBr are efficiently scavenged by rain. This removal is reduced by the production of Br2 (not soluble) in the gas phase from aqueous processes in the cloud droplets. This Br2 production process is therefore important for the PG budget in the upper troposphere and in the TTL. We also showed that this process is favoured by acidic conditions in the coud droplets, i.e. polluted conditions.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3