A-train CALIOP and MLS observations of early winter antarctic polar stratospheric clouds and nitric acid in 2008

Author:

Lambert A.,Santee M. L.,Wu D. L.,Chae J. H.

Abstract

Abstract. A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Microwave Limb Sounder (MLS) observations are used to investigate the development of polar stratospheric clouds (PSCs) and the gas phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS) radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT) in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS) analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS), but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to −7 K) distributed about the NAT equilibrium curve. Rapid gas phase HNO3 depletion is first seen by MLS from from 23–25 May 2008, consisting of a decrease in the volume mixing ratio (parts per billion by volume) from 14 ppbv to 7 ppbv on the 46–32 hPa (hectopascal) pressure levels and accompanied by a 2–3 ppbv increase by renitrification at the 68 hPa pressure level. Temperature-time histories of air parcels demonstrate that the depleted HNO3 region is more clearly correlated with prior low temperature exposure of a few kelvin above the frost-point than with either the region bounded by the NAT existence temperature threshold or the region of minimum temperatures. From the combined data we infer the presence of large-size NAT particles with effective radii >5–7 μm and low NAT number densities <1×10−3 cm−3. This denitrification event is observed close to the pole in the Antarctic vortex before synoptic temperatures first fall below the ice frost point and before the widespread occurrence of large-scale NAT PSCs at altitudes 18–26 km in a polar freezing belt. The NAT outbreak is similar to an event previously reported from MIPAS observations in mid-June 2003 and is again linked to NAT formation via ice-seeding following an episode of mountain wave activity detected by AIRS. Subsequent wave-ice formation in the rapid cooling phases over the Antarctic Peninsula and Ellsworth Mountains is detected here by CALIOP and MIPAS. The NAT clouds appear to be composed of relatively small particles with estimated effective radii of around 1 μm and high NAT number densities >0.2 cm−3.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3