Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of the extreme air pollution episode in the Moscow megacity region

Author:

Konovalov I. B.,Beekmann M.,Kuznetsova I. N.,Yurova A.,Zvyagintsev A. M.

Abstract

Abstract. Numerous wildfires provoked by an unprecedented intensive heat wave caused continuous episodes of extreme air pollution in several Russian cities and densely pullulated regions, including the Moscow megacity region. This paper analyzes the chemical evolution of the atmosphere over the Moscow region during the 2010 heat wave by integrating available ground based and satellite measurements with results of meso-scale modeling. The state-of-the-art CHIMERE CTM is used, which is modified to take into account air pollutant emissions from wildfires and the shielding effect of smoke aerosols. The wild fire emissions are derived from satellite measurements of the fire radiative power and are optimized by assimilating data of ground measurements of carbon monoxide (CO) and particulate matter (PM10) into the model. It is demonstrated that the optimized simulations reproduce independent observations, which were withheld during the optimisation procedure, quite adequately (specifically, the correlation coefficient of daily time series of CO and PM10 exceeds 0.8) and that inclusion of the fire emissions into the model significantly improves its performance. The results of the analysis show that wildfires were a principal factor causing the observed air pollution episodes associated with the extremely high level of daily mean CO and PM10 concentrations (up to 10 mg m−3 and 700 μg m−3 in the averages over available monitoring sites, respectively) in the Moscow region, although accumulation of anthropogenic pollution was also favoured by a stagnant meteorological situation. In contrast, diagnostic model runs indicate that ozone concentrations could reach very high values even without fire emissions which provide "fuel" for ozone formation, but, at the same time, inhibit it as a result of absorption and scattering of solar radiation by smoke aerosols. The analysis of MOPITT CO measurements and of corresponding simulations indicates that the observed episodes of extreme air pollution in Moscow were only a part of a very strong perturbation of the atmospheric composition, caused by wildfires, over the largest part of European Russia. It is estimated that 2010 fires in the European part of Russia emitted ~9.7 Tg CO, that is more than 85% of the total annual anthropogenic CO emissions in this region. About 30% of total CO fire emissions in European Russia are identified as emissions from peat fires.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3