Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature

Author:

Tong H.-J.,Reid J. P.,Bones D. L.,Luo B. P.,Krieger U. K.

Abstract

Abstract. The influence of glassy states and highly viscous solution phases on the timescale of aerosol particle equilibration with water vapour is examined. In particular, the kinetics of mass transfer of water between the condensed and gas phases has been studied for sucrose solution droplets under conditions above and below the glass transition relative humidity (RH). At RHs above the glass transition, sucrose droplets are shown to equilibrate on a timescale comparable to the change in environmental conditions. Below the glass transition, the timescale for mass transfer is shown to be extremely slow, with particles remaining in a state of disequilibrium even after timescales of more than 10000 s. A phenomenological approach for quantifying the time response of particle size is used to illustrate the influence of the glassy aerosol state on the kinetics of mass transfer of water: the time is estimated for the droplet to reach the halfway point from an initial state towards a disequilibrium state at which the rate of size change decreases below 1 nm every 10000 s. This half-time increases above 1000 s once the particle can be assumed to have formed a glass. The measurements are shown to be consistent with kinetic simulations of the slow diffusion of water within the particle bulk. Similar behaviour is observed for binary aqueous raffinose solution droplets consistent with the influence of a glass transition on mass transfer. Mixed component droplets of sucrose/sodium chloride/water also show slow equilibration at low RH, illustrating the importance of understanding the role of the bulk solution viscosity on the rate of mass transfer with the gas phase, even under conditions that may not lead to the formation of a glass.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3