Short-lived brominated species – observations in the source regions and the tropical tropopause layer
Author:
Brinckmann S.,Engel A.,Bönisch H.,Quack B.,Atlas E.
Abstract
Abstract. We conducted measurements of up to the five important short-lived brominated species in the marine boundary layer (MBL) of the mid-latitudes (List/Sylt, North Sea) in June 2009 and of the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series in List mean mixing ratios of 2.0, 1.1, 0.2, 0.1 ppt were analysed for CHBr3, CH2Br2, CHBr2Cl and CH2BrCl, with maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) mean mixing ratios of 1.0, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl were determined. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two datasets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined dataset from the two campaigns, rough estimates of the molar emission ratios between the correlated substances were derived as follows: 9/1/0.3/0.3 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5.07° S, 42.87° W) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13 % of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90 % of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from short-lived substances was reduced to 1.35 ppt, with 1.07 ppt and 0.12 ppt attributed to CH2Br2 and CHBr3 respectively.
Funder
European Commission
Publisher
Copernicus GmbH
Reference33 articles.
1. Atlas, E., Pollock, W., Greenberg, J., Heidt, L., and Thompson, A.: Alkyl Nitrates, Nonmethane Hydrocarbons, and Halocarbon Gases Over the Equatorial Pacific Ocean During Saga 3, J. Geophys. Res., 98(D9), 16933–16947, 1993. 2. Aschmann, J., Sinnhuber, B.-M., Atlas, E. L., and Schauffler, S. M.: Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, 2009. 3. Butler, J. H., King, D. B., Lobert, J. M., Montzka, S. A., Yvon-Lewis, S. A., Hall, B. D., Warwick, N. J., Mondeel, D. J., Aydin, M., and Elkins, J. W.: Oceanic distributions and emissions of short-lived halocarbons, Global Biogeochem. Cy., 21, GB1023, https://doi.org/10.1029/2006GB002732, 2007. 4. Carpenter, L. J., Liss, P. S., and Penkett, S. A.: Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans, J. Geophys. Res., 108(D9), 4256, https://doi.org/10.1029/2002JD002769, 2003. 5. Carpenter, L. J., Wevill, D. J., O'Doherty, S., Spain, G., and Simmonds, P. G.: Atmospheric bromoform at Mace Head, Ireland: seasonality and evidence for a peatland source, Atmos. Chem. Phys., 5, 2927–2934, https://doi.org/10.5194/acp-5-2927-2005, 2005.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|