Abstract
Abstract. The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). This study outlines the considerable contribution of unresolved waves, dominated by gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later. This temporal shift is associated with long-term changes in the planetary wave activity that are mainly due to synoptic waves. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This is associated with a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening westerly winds through the thermal wind balance, which in turn causes a reduction in wave activity in high latitudes. This study suggests that the decrease in planetary wave activity provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. Finally, we identify long-term changes in the Brewer-Dobson circulation that, this study suggests, are largely caused by trends in the planetary wave activity during winter and by trends in the gravity wave forcing otherwise.
Reference75 articles.
1. Alexander, M. J. and Rosenlof, K. H.: Nonstationary gravity wave forcing of the stratospheric zonal mean wind, J. Geophys. Res., 101, 23465–23474, 1996.
2. Alexander, M. J. and Rosenlof, K. H.: Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models, J.\\ Geophys. Res., 108, 4597, https://doi.org/10.1029/2003JD003373, 2003.
3. Andrews, D. G., Mahlman, J. D., and Sinclair, R. W.: Eliassen-Palm Diagnostics of Wave-Mean Flow Interaction in the GFDL "SKYHI" General Circulation Model, J. Atmos. Sci., 40, 2768–2784, https://doi.org/10.1175/1520-0469(1983)0402.0.CO;2, 1983.
4. Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, 489 pp., 1987.
5. Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937–30946, https://doi.org/10.1029/1999JD900445, 1999.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献