MiGIS: micromorphological soil and sediment thin section analysis using an open-source GIS and machine learning approach
-
Published:2024-01-26
Issue:1
Volume:73
Page:69-93
-
ISSN:2199-9090
-
Container-title:E&G Quaternary Science Journal
-
language:en
-
Short-container-title:E&G Quaternary Sci. J.
Author:
Zickel MirijamORCID, Gröbner Marie, Röpke Astrid, Kehl Martin
Abstract
Abstract. Micromorphological analysis using a petrographic microscope is one of the conventional methods to characterise microfacies in rocks (sediments) and soils. This analysis of the composition and structure observed in thin sections (TSs) yields seminal, but primarily qualitative, insights into their formation. In this context, the following question arises: how can micromorphological features be measured, classified, and particularly quantified to enable comparisons beyond the micro scale? With the Micromorphological Geographic Information System (MiGIS), we have developed a Python-based toolbox for the open-source software QGIS 3, which offers a straightforward solution to digitally analyse micromorphological features in TSs. By using a flatbed scanner and (polarisation) film, high-resolution red–green–blue (RGB) images can be captured in transmitted light (TL), cross-polarised light (XPL), and reflected light (RL) mode. Merging these images in a multi-RGB raster, feature-specific image information (e.g. light refraction properties of minerals) can be combined in one data set. This provides the basis for image classification with MiGIS. The MiGIS classification module uses the random forest algorithm and facilitates a semi-supervised (based on training areas) classification of the feature-specific colour values (multi-RGB signatures). The resulting classification map shows the spatial distribution of thin section features and enables the quantification of groundmass, pore space, minerals, or pedofeatures, such nodules being dominated by iron oxide and clay coatings. We demonstrate the advantages and limitations of the method using TSs from a loess–palaeosol sequence in Rheindahlen (Germany), which was previously studied using conventional micromorphological techniques. Given the high colour variance within the feature classes, MiGIS appears well-suited for these samples, enabling the generation of accurate TS feature maps. Nevertheless, the classification accuracy can vary due to the TS quality and the academic training level, in micromorphology and in terms of the classification process, when creating the training data. However, MiGIS offers the advantage of quantifying micromorphological features and analysing their spatial distribution for entire TSs. This facilitates reproducibility, visualisation of spatial relationships, and statistical comparisons of composition among distinct samples (e.g. related sediment layers).
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference52 articles.
1. Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use and land cover classification system for use with remote sensor data, Tech. rep., USGS Publications Warehouse, Professional Paper, 964, Reston, USA, https://doi.org/10.3133/pp964, 1976. a 2. Arnay, R., Hernández-Aceituno, J., and Mallol, C.: Soil micromorphological image classification using deep learning: The porosity parameter, Appl. Soft Comput., 102, 107093, https://doi.org/10.1016/j.asoc.2021.107093, 2021. a 3. Arpin, T. L., Mallol, C., and Goldberg, P.: Short contribution: A new method of analyzing and documenting micromorphological thin sections using flatbed scanners: Applications in geoarchaeological studies, Geoarchaeology, 17, 305–313, https://doi.org/10.1002/gea.10014, 2002. a, b 4. Beckmann, T.: Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen, Hohenheimer Bodenkundliche Hefte, 40, 89–103, 1997. a 5. Breimann, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c, d
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|