MiGIS: micromorphological soil and sediment thin section analysis using an open-source GIS and machine learning approach

Author:

Zickel MirijamORCID,Gröbner Marie,Röpke Astrid,Kehl Martin

Abstract

Abstract. ​​​​​​​Micromorphological analysis using a petrographic microscope is one of the conventional methods to characterise microfacies in rocks (sediments) and soils. This analysis of the composition and structure observed in thin sections (TSs) yields seminal, but primarily qualitative, insights into their formation. In this context, the following question arises: how can micromorphological features be measured, classified, and particularly quantified to enable comparisons beyond the micro scale? With the Micromorphological Geographic Information System (MiGIS), we have developed a Python-based toolbox for the open-source software QGIS 3, which offers a straightforward solution to digitally analyse micromorphological features in TSs. By using a flatbed scanner and (polarisation) film, high-resolution red–green–blue (RGB) images can be captured in transmitted light (TL), cross-polarised light (XPL), and reflected light (RL) mode. Merging these images in a multi-RGB raster, feature-specific image information (e.g. light refraction properties of minerals) can be combined in one data set. This provides the basis for image classification with MiGIS. The MiGIS classification module uses the random forest algorithm and facilitates a semi-supervised (based on training areas) classification of the feature-specific colour values (multi-RGB signatures). The resulting classification map shows the spatial distribution of thin section features and enables the quantification of groundmass, pore space, minerals, or pedofeatures, such nodules being dominated by iron oxide and clay coatings. We demonstrate the advantages and limitations of the method using TSs from a loess–palaeosol sequence in Rheindahlen (Germany), which was previously studied using conventional micromorphological techniques. Given the high colour variance within the feature classes, MiGIS appears well-suited for these samples, enabling the generation of accurate TS feature maps. Nevertheless, the classification accuracy can vary due to the TS quality and the academic training level, in micromorphology and in terms of the classification process, when creating the training data. However, MiGIS offers the advantage of quantifying micromorphological features and analysing their spatial distribution for entire TSs. This facilitates reproducibility, visualisation of spatial relationships, and statistical comparisons of composition among distinct samples (e.g. related sediment layers).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3