Ozone and carbon monoxide observations over open oceans on R/V <i>Mirai</i> from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport

Author:

Kanaya Yugo,Miyazaki KazuyukiORCID,Taketani Fumikazu,Miyakawa TakumaORCID,Takashima Hisahiro,Komazaki Yuichi,Pan XiaoleORCID,Kato Saki,Sudo KengoORCID,Sekiya TakashiORCID,Inoue JunORCID,Sato Kazutoshi,Oshima KazuhiroORCID

Abstract

Abstract. Constraints from ozone (O3) observations over oceans are needed in addition to those from terrestrial regions to fully understand global tropospheric chemistry and its impact on the climate. Here, we provide a large data set of ozone and carbon monoxide (CO) levels observed (for 11 666 and 10 681 h, respectively) over oceans. The data set is derived from observations made during 24 research cruise legs of R/V Mirai during 2012 to 2017, in the Southern, Indian, Pacific, and Arctic oceans, covering the region from 67∘ S to 75∘ N. The data are suitable for critical evaluation of the over-ocean distribution of ozone derived from global atmospheric chemistry models. We first give an overview of the statistics in the data set and highlight key features in terms of geographical distribution and air mass type. We then use the data set to evaluate ozone mixing ratio fields from the tropospheric chemistry reanalysis version 2 (TCR-2), produced by assimilating a suite of satellite observations of multiple species into a global atmospheric chemistry model, namely CHASER. For long-range transport of polluted air masses from continents to the oceans, during which the effects of forest fires and fossil fuel combustion were recognized, TCR-2 gave an excellent performance in reproducing the observed temporal variations and photochemical buildup of O3 when assessed from ΔO3∕ΔCO ratios. For clean marine conditions with low and stable CO mixing ratios, two focused analyses were performed. The first was in the Arctic (> 70∘ N) in September every year from 2013 to 2016; TCR-2 underpredicted O3 levels by 6.7 ppbv (21 %) on average. The observed vertical profiles from O3 soundings from R/V Mirai during September 2014 had less steep vertical gradients at low altitudes (> 850 hPa) than those obtained by TCR-2. This suggests the possibility of a more efficient descent of the O3-rich air from above than assumed in the models. For TCR-2 (CHASER), dry deposition on the Arctic ocean surface might also have been overestimated. In the second analysis, over the western Pacific equatorial region (125–165∘ E, 10∘ S to 25∘ N), the observed O3 level more frequently decreased to less than 10 ppbv in comparison to that obtained with TCR-2 and also those obtained in most of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) model runs for the decade from 2000. These results imply loss processes that are unaccounted for in the models. We found that the model's positive bias positively correlated with the daytime residence times of air masses over a particular grid, namely 165–180∘ E and 15–30∘ N; an additional loss rate of 0.25 ppbv h−1 in the grid best explained the gap. Halogen chemistry, which is commonly omitted from currently used models, might be active in this region and could have contributed to additional losses. Our open data set covering wide ocean regions is complementary to the Tropospheric Ozone Assessment Report data set, which basically comprises ground-based observations and enables a fully global study of the behavior of O3.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3