Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015
-
Published:2019-06-12
Issue:11
Volume:19
Page:7859-7881
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Maasakkers Joannes D., Jacob Daniel J., Sulprizio Melissa P., Scarpelli Tia R., Nesser HannahORCID, Sheng Jian-XiongORCID, Zhang YuzhongORCID, Hersher Monica, Bloom A. Anthony, Bowman Kevin W., Worden John R., Janssens-Maenhout GreetORCID, Parker Robert J.ORCID
Abstract
Abstract. We use 2010–2015 observations of atmospheric methane columns from
the GOSAT satellite instrument in a global inverse analysis to improve
estimates of methane emissions and their trends over the period, as well as
the global concentration of tropospheric OH (the hydroxyl radical, methane's
main sink) and its trend. Our inversion solves the Bayesian optimization
problem analytically including closed-form characterization of errors. This
allows us to (1) quantify the information content from the inversion towards
optimizing methane emissions and its trends, (2) diagnose error correlations
between constraints on emissions and OH concentrations, and (3) generate a
large ensemble of solutions testing different assumptions in the inversion.
We show how the analytical approach can be used, even when prior error
standard deviation distributions are lognormal. Inversion results show large
overestimates of Chinese coal emissions and Middle East oil and gas emissions in
the EDGAR v4.3.2 inventory but little error in the United States where we use a new
gridded version of the EPA national greenhouse gas inventory as prior
estimate. Oil and gas emissions in the EDGAR v4.3.2 inventory show large
differences with national totals reported to the United Nations Framework
Convention on Climate Change (UNFCCC), and our inversion is generally more
consistent with the UNFCCC data. The observed 2010–2015 growth in
atmospheric methane is attributed mostly to an increase in emissions from
India, China, and areas with large tropical wetlands. The contribution from
OH trends is small in comparison. We find that the inversion provides strong
independent constraints on global methane emissions (546 Tg a−1) and
global mean OH concentrations (atmospheric methane lifetime against oxidation
by tropospheric OH of 10.8±0.4 years), indicating that satellite
observations of atmospheric methane could provide a proxy for OH
concentrations in the future.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference111 articles.
1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O.,
Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A.,
Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse
modelling of CH4 emissions for 2010–2011 using different satellite retrieval
products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133,
https://doi.org/10.5194/acp-15-113-2015, 2015. a, b 2. Allan, W., Struthers, H., and Lowe, D.: Methane carbon isotope effects caused
by atomic chlorine in the marine boundary layer: Global model results
compared with Southern Hemisphere measurements, J. Geophys. Res.-Atmos., 112,
D04306, https://doi.org/10.1029/2006JD007369, 2007. a 3. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R.,
Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort,
E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara,
M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C.,
Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane
emissions from the U.S. oil and gas supply chain, Science, 361, 186–188,
https://doi.org/10.1126/science.aar7204, 2018. a 4. Bader, W., Bovy, B., Conway, S., Strong, K., Smale, D., Turner, A. J.,
Blumenstock, T., Boone, C., Collaud Coen, M., Coulon, A., Garcia, O.,
Griffith, D. W. T., Hase, F., Hausmann, P., Jones, N., Krummel, P., Murata,
I., Morino, I., Nakajima, H., O'Doherty, S., Paton-Walsh, C., Robinson, J.,
Sandrin, R., Schneider, M., Servais, C., Sussmann, R., and Mahieu, E.: The
recent increase of atmospheric methane from 10 years of ground-based NDACC
FTIR observations since 2005, Atmos. Chem. Phys., 17, 2255–2277,
https://doi.org/10.5194/acp-17-2255-2017, 2017. a 5. Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F.,
Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M.,
Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric
methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model
simulations, J. Geophys. Res.-Atmos., 112, D02304,
https://doi.org/10.1029/2006JD007268, 2007. a
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|