Long-term aerosol optical hygroscopicity study at the ACTRIS SIRTA observatory: synergy between ceilometer and in situ measurements
-
Published:2019-06-13
Issue:11
Volume:19
Page:7883-7896
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Bedoya-Velásquez Andrés Esteban, Titos GloriaORCID, Bravo-Aranda Juan AntonioORCID, Haeffelin Martial, Favez Olivier, Petit Jean-EudesORCID, Casquero-Vera Juan AndrésORCID, Olmo-Reyes Francisco José, Montilla-Rosero Elena, Hoyos Carlos D.ORCID, Alados-Arboledas LucasORCID, Guerrero-Rascado Juan LuisORCID
Abstract
Abstract. An experimental setup to study aerosol hygroscopicity is proposed based on
the temporal evolution of attenuated backscatter coefficients from a
ceilometer colocated with an instrumented tower equipped with meteorological
sensors at different heights. This setup is used to analyze a 4.5-year
database at the ACTRIS SIRTA observatory in Palaiseau (Paris, France, 2.208∘ E, 48.713∘ N; 160 m above sea level). A
strict criterion-based procedure has been established to identify
hygroscopic growth cases using ancillary information, such as online
chemical composition, resulting in 8 hygroscopic growth cases from a
total of 107 potential cases. For these eight cases, hygroscopic
growth-related properties, such as the attenuated backscatter enhancement
factor fβ (RH) and the hygroscopic growth
coefficient γ, are evaluated. This study shows that the
hygroscopicity parameter γ is negatively correlated with the aerosol
organic mass fraction but shows a positive correlation with the aerosol
inorganic mass fraction. Among inorganic species, nitrate exhibited the highest correlation. This is the first time that hygroscopic enhancement factors are directly
retrieved under ambient aerosols using remote-sensing techniques, which are
combined with online chemical composition in situ measurements to evaluate
the role of the different aerosol species in aerosol hygroscopicity.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference50 articles.
1. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989. 2. Bedoya-Velásquez, A. E., Navas-Guzmán, F., Granados-Muñoz, M. J., Titos, G., Román, R., Casquero-Vera, J. A., Ortiz-Amezcua, P., Benavent-Oltra, J. A., de Arruda Moreira, G., Montilla-Rosero, E., Hoyos, C. D., Artiñano, B., Coz, E., Olmo-Reyes, F. J., Alados-Arboledas, L., and Guerrero-Rascado, J. L.: Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation, Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, 2018. 3. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. 4. Chen, J., Zhao, C. S., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain, Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, 2014. 5. Chen, J., Budisulistiorini, S. H., Miyakawa, T., Komazaki, Y., and Kuwata, M.: Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia, Atmos. Chem. Phys., 18, 7781–7798, https://doi.org/10.5194/acp-18-7781-2018, 2018.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|