Multi-site evaluation of the JULES land surface model using global and local data

Author:

Slevin D.ORCID,Tett S. F. B.ORCID,Williams M.

Abstract

Abstract. This study evaluates the ability of the JULES land surface model (LSM) to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, gross primary productivity (GPP) estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so) were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET). Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI). Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.

Publisher

Copernicus GmbH

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3