Review article: Melt-affected ice cores for polar research in a warming world

Author:

Moser Dorothea ElisabethORCID,Thomas Elizabeth R.ORCID,Nehrbass-Ahles ChristophORCID,Eichler AnjaORCID,Wolff EricORCID

Abstract

Abstract. Melting polar and alpine ice sheets in response to global warming pose ecological and societal risks but will also hamper our ability to reconstruct past climate and atmospheric composition across the globe. Since polar ice caps are crucial environmental archives but highly sensitive to ongoing climate warming, the Arctic and Antarctic research community is increasingly faced with melt-affected ice cores, which are already common in alpine settings of the lower latitudes. Here, we review the characteristics and effects of near-surface melting on ice-core records, focusing on a polar readership and making recommendations for melt-prone study regions. This review first covers melt layer formation, identification and quantification of melt, and structural characteristics of melt features. Subsequently, it discusses effects of melting on records of chemical impurities, i.e. major ions, trace elements, black carbon, and organic species as well as stable water isotopic signatures, gas records, and applications of melt layers as environmental proxies. Melting occurs during positive surface energy balance events, which are shaped by global to local meteorological forcing, regional orography, glacier surface conditions and subsurface characteristics. Meltwater flow ranges from homogeneous wetting to spatially heterogeneous preferential flow paths and is determined by temperature, thermal conductivity and stratigraphy of the snowpack. Melt layers and lenses are the most common consequent features in ice cores and are usually recorded manually or using line scanning. Chemical ice-core proxy records of water-soluble species are generally less preserved than insoluble particles such as black carbon or mineral dust due to their strong elution behaviour during percolation. However, high solubility in ice as observed for ions like F−, Cl−, NH4+ or ultra-trace elements can counteract the high mobility of these species due to burial in the ice interior. Stable water isotope records like δ18O are often preserved but appear smoothed if significant amounts of meltwater are involved. Melt-affected ice cores are further faced with questions about the permeability of the firn column for gas movement, and gas concentrations can be increased through dissolution and in situ production. Noble gas ratios can be useful tools for identifying melt-affected profile sections in deep ice. Despite challenges for ice-core climate reconstruction based on chemical records, melt layers are a proxy of warm temperatures above freezing, which is most sensitive in the dry snow and percolation zone. Bringing together insights from snow physics, firn hydrology, and ice-core proxy research, we aim to foster a more comprehensive understanding of ice cores as climate and environmental archives, provide a reference on how to approach melt-affected records, and raise awareness of the limitations and potential of melt layers in ice cores.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3