Evaluating wind profiles in a numerical weather prediction model with Doppler lidar

Author:

Pentikäinen Pyry,O'Connor Ewan J.ORCID,Ortiz-Amezcua Pablo

Abstract

Abstract. We use Doppler lidar wind profiles from six locations around the globe to evaluate the wind profile forecasts in the boundary layer generated by the operational global Integrated Forecast System (IFS) from the European Centre for Medium-range Weather Forecasts (ECMWF). The six locations selected cover a variety of surfaces with different characteristics (rural, marine, mountainous urban, and coastal urban). We first validated the Doppler lidar observations at four locations by comparison with co-located radiosonde profiles to ensure that the Doppler lidar observations were of sufficient quality. The two observation types agree well, with the mean absolute error (MAE) in wind speed almost always less than 1 m s−1. Large deviations in the wind direction were usually only seen for low wind speeds and are due to the wind direction uncertainty increasing rapidly as the wind speed tends to zero. Time–height composites of the wind evaluation with 1 h resolution were generated, and evaluation of the model winds showed that the IFS model performs best over marine and coastal locations, where the mean absolute wind vector error was usually less than 3 m s−1 at all heights within the boundary layer. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. For example, in Granada, which is near a high mountain range, the IFS model failed to capture a commonly occurring mountain breeze, which is highly dependent on the sub-grid-size terrain features that are not resolved by the model. The uncertainty in the wind forecasts increased with forecast lead time, but no increase in the bias was seen. At one location, we conditionally performed the wind evaluation based on the presence or absence of a low-level jet diagnosed from the Doppler lidar observations. The model was able to reproduce the presence of the low-level jet, but the wind speed maximum was about 2 m s−1 lower than observed. This is attributed to the effective vertical resolution of the model being too coarse to create the strong gradients in wind speed observed. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.

Funder

Väisälän Rahasto

Academy of Finland

Publisher

Copernicus GmbH

Subject

General Medicine

Reference49 articles.

1. Accadia, C., Zecchetto, S., Lavagnini, A., and Speranza, A.: Comparison of 10-m wind forecasts from a Regional Area Model and QuikSCAT Scatterometer wind observations over the Mediterranean Sea, Mon. Weather Rev., 135, 1945– 1960, https://doi.org/10.1175/MWR3370.1, 2007. a, b

2. Andersson, E.: How to evolve global observing systems, ECMWF Newsletter, 153, 37–40, https://doi.org/10.21957/9fxea2, 2017. a

3. Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 2013-09-28 to 2022-05-29, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Keeler, E., Coulter, R., Kyrouac, J., and Holdridge, D., ARM Data Center [data set], https://doi.org/10.5439/1021460, 2013. a

4. Atmospheric Radiation Measurement (ARM) user facility: Doppler Lidar Horizontal Wind Profiles (DLPROFWIND4NEWS), 2014-10-21 to 2022-03-20, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Shippert, T., Newsom, R., and Riihimaki, L., ARM Data Center [data set], https://doi.org/10.5439/1178582, 2014. a

5. Beck, J., Nuret, M., and Bousquet, O.: Model wind field forecast verification using multiple-Doppler syntheses from a national radar network, Weather Forecast., 29, 331–348, https://doi.org/10.1175/WAF-D-13-00068.1, 2014. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3