Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
-
Published:2023-05-09
Issue:9
Volume:16
Page:2455-2475
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Heinke JensORCID, Rolinski Susanne, Müller ChristophORCID
Abstract
Abstract. To represent the impact of grazing livestock on carbon (C) and nitrogen (N) dynamics in grasslands, we implement a livestock module into LPJmL5.0-tillage, a global vegetation and crop model with explicit representation of managed grasslands and pastures, forming LPJmL5.0-grazing. The livestock module uses lactating dairy cows as a generic representation of grazing livestock. The new module explicitly accounts for forage quality in terms of dry-matter intake and digestibility using relationships derived from compositional analyses for different forages. Partitioning of N into milk, feces, and urine as simulated by the new livestock module shows very good agreement with observation-based relationships reported in the literature. Modelled C and N dynamics depend on forage quality (C:N ratios in grazed biomass), forage quantity, livestock densities, manure or fertilizer inputs, soil, atmospheric CO2 concentrations, and climate conditions. Due to the many interacting relationships, C sequestration, GHG emissions, N losses, and livestock productivity show substantial variation in space and across livestock densities. The improved LPJmL5.0-grazing model can now assess the effects of livestock grazing on C and N stocks and fluxes in grasslands. It can also provide insights about the spatio-temporal variability of grassland productivity and about the trade-offs between livestock production and environmental impacts.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Reference48 articles.
1. Abu Ghalia, M. and Dahman, Y.: Synthesis and utilization of natural
fiber-reinforced poly (lactic acid) bionanocomposites, in: Lignocellulosic
Fibre and Biomass-Based Composite Materials, Elsevier, 313–345,
https://doi.org/10.1016/B978-0-08-100959-8.00015-9, 2017. a 2. Amthor, J. S.: Efficiency of Lignin Biosynthesis: a Quantitative Analysis,
Ann. Botany, 91, 673–695, https://doi.org/10.1093/aob/mcg073, 2003. a, b 3. Baucher, M., Monties, B., Montagu, M. V., and Boerjan, W.: Biosynthesis and
Genetic Engineering of Lignin, Crit. Rev. Plant Sci., 17,
125–197, https://doi.org/10.1080/07352689891304203, 1998. a 4. Büchner, M. and Reyer, C.: ISIMIP3a atmospheric composition input data
(v1.2), ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.664235.2, 2022. a, b 5. Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P.,
Obersteiner, M., Guenet, B., Goll, D. S., Li, W., Naipal, V., Peng, S., Qiu,
C., Tian, H., Viovy, N., Yue, C., and Zhu, D.: Climate warming from managed
grasslands cancels the cooling effect of carbon sinks in sparsely grazed and
natural grasslands, Nat. Commun., 12, 118,
https://doi.org/10.1038/s41467-020-20406-7, 2021. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|