A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient

Author:

Liu Yuqing,Ma Wenhong,Kou Dan,Niu Xiaxia,Wang Tian,Chen Yongliang,Chen DimaORCID,Zhu Xiaoqin,Zhao Mengying,Hao Baihui,Zhang Jinbo,Yang Yuanhe,Hu Huifeng

Abstract

Abstract. Microbial stoichiometry and its potential driving factors play crucial roles in understanding the balance of chemical elements in ecological interactions and nutrient limitations along the aridity gradient. However, little is known about the variation in these features along the aridity gradient due to the lack of comprehensive field investigations. Additionally, previous studies focused on the topsoil (0–10 or 0–20 cm); however, the minimum sampling depth for topsoil could impact the results of the vertical distribution of microbial stoichiometry. In the present study, we measured the variation in microbial stoichiometry, examined the major influential factors (climatic, edaphic, and biotic factors) along an aridity gradient, and determined whether the sampling depth affected microbial C : N : P stoichiometry. From the topsoil to the subsoil, the microbial C : N, C : P, and N : P ratios varied from 6.59 to 6.83, from 60.2 to 60.5, and from 9.29 to 8.91, respectively. Only the microbial C : N ratio significantly increased with soil depth. The microbial C : N ratio significantly increased with increasing aridity in both topsoil and subsoil, while the microbial N : P ratio decreased along the aridity gradient only for the topsoil. This result implied that drought-stimulated microbes tend to be more N conservative, especially those in topsoil. Among all the factors, the soil organic carbon (SOC) content and the fungi-to-bacteria ratio exerted the largest influence on the microbial C : N, C : P, and N : P ratios at both soil depths, implying that the substrate supply and microbial structure together controlled the microbial stoichiometry. The results also revealed that the aridity index (AI) and plant aboveground biomass (AGB) exerted negative impacts on the microbial C : N ratio at both soil depths, and the effects of AI decreased in the subsoil. The results of this study suggested that the flexibility of the microbial N : P ratio should be considered when establishing the sampling depth for microbial stoichiometry study.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3