Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan
-
Published:2015-11-24
Issue:2
Volume:4
Page:215-226
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Kusagaya T.,Tanaka H. K. M.
Abstract
Abstract. Muography offers us a tool to observe hazardous erupting volcanoes remotely. However, practical muographic observations of volcanoes from a distance are difficult; therefore, various observations have been performed in the vicinity (< 1.5 km) of volcano peaks to suppress background noise and enhance images. In this study, we created a muographic image directly beneath the caldera floor of the erupting Shinmoe-dake volcano in Japan by locating our muography telescope 5 km from the peak. The Shinmoe-dake volcano began to erupt on 19 January 2011 and, in less than 1 month, the ejected lava almost completely filled the caldera and completely changed the topography of the caldera floor. The resultant image shows a low-density region underneath the western part of the newly created caldera floor, which indicates the existence of a void there. After the volcano became less active in February 2011, infrequent eruptions might have left a void beneath the caldera floor, which may trigger a collapse in the future. We anticipate that our novel muography will be a practical tool for monitoring and predicting eruption sequences in the near future.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference40 articles.
1. Abdel-Monem, M. S., Benbrook, J. R., Osborne, A. R., Sheldon, W. R., Choate, L. M., Magnuson, C. E., Duller, N. M., and Green, P. J.: Cosmic ray muon spectra at zenith angles 65° and 80° using the AMH Magnetic Spectrometer, in: 14th International Cosmic Ray Conference, München, 15–29 August 1975, 6, p. 2043, 1975. 2. Achard, P., Adriani, O., Aguilar-Benitez, M., et al.: Measurement of the atmospheric muon spectrum from 20 to 3000 GeV, Phys. Lett. B, 598, 15–32, https://doi.org/10.1016/j.physletb.2004.08.003, 2004. 3. Agostinelli, S., Allison, J., Amako, K., et al.: Geant4 – a simulation toolkit, Nucl. Instrum. Meth. A, 506, 250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003. 4. Allkofer, O. C., Bella, G., Dau, W. D., Jokisch, H., Klemke, G., Oren, Y., and Uhr, R.: Cosmic ray muon spectra at sea-level up to 10 TeV, Nucl. Phys. B, 259, 1–18, https://doi.org/10.1016/0550-3213(85)90294-9, 1985. 5. Barrett, P. H., Bollinger, L. M., Cocconi, G., Eisenberg, Y., and Greisen, K.: Interpretation of cosmic-ray measurements far underground, Rev. Mod. Phys., 24, 133–178, 1952.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|