An approach to track instrument calibration and produce consistent products with the version-8 total column ozone algorithm (V8TOZ)

Author:

Zhang Zhihua,Niu Jianguo,Flynn Lawrence E.,Beach Eric,Beck Trevor

Abstract

Abstract. The Ozone Mapping and Profiler Suite (OMPS) has been on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite since October 2011 and was followed by an OMPS on NOAA-20 (N20) in November 2017 as part of the US Joint Polar Satellite System (JPSS) program. The OMPS measurements are processed to yield various products of atmospheric composition data for near-real-time monitoring and offline study, including retrievals of total column ozone (TCO) and an ultraviolet-absorbing aerosol index (AI) based on the version-8 total ozone (V8TOZ) algorithm. With the implementation of changes to employ a broadband channel approach in the NOAA OMPS V8TOZ, the retrieved TCO and AI products have become more stable and consistent between S-NPP and N20. Two particular regions have been chosen for building soft-calibration adjustments for both OMPS S-NPP and N20, which force the V8TOZ retrievals to be in quite good agreement from both sensors with little change by season. However, bias analysis shows that some noticeable errors and differences still exist after soft-calibration, and those errors appear to be quite persistently associated with solar zenith angle (SZA) and satellite viewing angle (SVA) in the retrievals of TCO and AI for both OMPS S-NPP and N20. Comparisons of TCO and AI from NOAA OMPS retrievals with other products such as those from the Tropospheric Monitoring Instrument (TROPOMI) and the Earth Polychromatic Imaging Camera (EPIC) show that, although the sensor, algorithm, and solar spectra are different among them, the overall retrievals from those products are quite similar and consistent.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3