The upstream–downstream connection of North Atlantic and Mediterranean cyclones in semi-idealized simulations

Author:

Scherrmann Alexander,Wernli HeiniORCID,Flaounas EmmanouilORCID

Abstract

Abstract. Cyclogenesis in the Mediterranean is typically triggered by the intrusion of a potential vorticity (PV) streamer over the Mediterranean. The intrusion of the PV streamer results from a preceding Rossby wave breaking (RWB) upstream over the North Atlantic. The ridge leading to the RWB is typically amplified by the presence of warm conveyor belts (WCBs) in at least one North Atlantic cyclone about 4 d prior to Mediterranean cyclogenesis. Thus, the sequence of these four main events (namely a North Atlantic cyclone, WCBs, RWB, and the resulting PV streamers) forms an archetypal scenario leading to Mediterranean cyclogenesis. However, they rarely occur in a spatially consistent, fully repetitive pattern for real cyclone cases. To more systematically study this connection between upstream North Atlantic cyclones and Mediterranean cyclogenesis, we perform a set of semi-idealized simulations over the Euro-Atlantic domain. For these simulations, we prescribe a constant climatological atmospheric state in the initial and boundary conditions. To trigger the downstream Mediterranean cyclogenesis scenario, we perturb the climatological polar jet through the inversion of a positive upper-level PV anomaly. The amplitude of this perturbation determines the intensity of the triggered North Atlantic cyclone. This cyclone provokes RWB, the intrusion of a PV streamer over the Mediterranean, and thereby the formation of a Mediterranean cyclone. Therefore, our results show a direct connection between the presence of a North Atlantic cyclone and the downstream intrusion of a PV streamer into the Mediterranean, which causes cyclogenesis about 4 d after perturbing the polar jet. We refer to this as the upstream–downstream connection of North Atlantic and Mediterranean cyclones. To investigate the sensitivity of this connection, we vary the position and amplitude of the upper-level PV anomaly. In all simulations, cyclogenesis occurs in the Mediterranean. Nevertheless, the tracks and intensity of the Mediterranean cyclones may vary by up to 20° and 10 hPa (at the time of the mature stage), respectively. This indicates that the Mediterranean cyclone dynamics are sensitive to the dynamical structure and amplitude of the intruding PV streamer, which itself is sensitive to the interaction of the upstream cyclone and the RW(B). By applying different seasonal climatological atmospheric states as initial conditions we show that cyclogenesis occurs in distinct regions in different seasons. Thus, the seasonal cycle of Mediterranean cyclogenesis might be partly determined by the large-scale atmospheric circulation, i.e., the seasonal location of the polar jet. Furthermore, we show that the Mediterranean cyclones in these semi-idealized simulations show characteristics that agree with the observed climatology of Mediterranean cyclones in the respective season.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3