A thermal infrared instrument onboard a geostationary platform for CO and O<sub>3</sub> measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE)

Author:

Claeyman M.,Attié J.-L.,Peuch V.-H.,El Amraoui L.,Lahoz W. A.,Josse B.,Joly M.,Barré J.,Ricaud P.,Massart S.,Piacentini A.,von Clarmann T.,Höpfner M.,Orphal J.,Flaud J.-M.,Edwards D. P.

Abstract

Abstract. This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to measure ozone (O3) and carbon monoxide (CO) for monitoring air quality (AQ) over Europe. The primary motivation of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O3 and CO in the lowermost troposphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O3 and CO LmT column. The information added by the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (although still lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) with a capability for monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference71 articles.

1. Akimoto, H., Irie, H., Kasai, Y., Kanaya, Y., Kita, K., Koike, M., Kondo, Y., Nakazawa, T., and Hayashida, S.: Planning a geostationary atmospheric observation satellite, Commission on the Atmospheric Observation Satellite of the Japan Society of Atmospheric Chemistry, (JSAC), Atmospheric Composition Research Program, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku, Yokohama City, Kanagawa, 236-0001, 2008.

2. Atlas, R. M.: Observing system simulation experiments: Methodology, examples and limitations, in: CGC/WMO Worshop, Geneva, 7–9 April, WMO TD No. 868, W.M.O., Geneva, Switzerland, 1997.

3. Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy.\\ Meteorol. Soc., 127, 869–886, 2001.

4. Bovensmann, H. and Orphal, J.: The geostationary component of an operational atmospheric chemistry monitoring system: Specification and expected performance?, in: Operational Atmospheric Chemistry Missions,, edited by: Kelder, H., van Weele, M., Goede, A., Kerridge, B. J., Reburn, W. J., Bovensmann, H., Monks, P. S., Remedios, J. J., Mager, R., and Sassier, H., Final Report for ESA Project 17237/03/NL/GS (CAPACITY), 121/148, ESA/ESTEC, http://www.knmi.nl/capacity/FinalDocs/geostationary\\20concept.pdf (last access: 1 February 2011), 2005.

5. Branis, M.: Air quality of Prague: traffic as a main pollution source, Environ. Monit. Assess., 156, 377–390, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3