An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils

Author:

Zhang Wei,Yao Zhisheng,Li Siqi,Zheng Xunhua,Zhang Han,Ma Lei,Wang Kai,Wang Rui,Liu Chunyan,Han ShenghuiORCID,Deng Jia,Li YongORCID

Abstract

Abstract. The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) was established to simultaneously quantify ecosystem productivity and losses of nitrogen and carbon at the site or catchment scale. As a process-oriented model, this model is expected to be universally applied to different climate zones, soils, land uses and field management practices. This study is one of many efforts to fulfill such an expectation, which was performed to improve the CNMM-DNDC by incorporating a physically based soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model was validated with simultaneous field observations in three typical alpine ecosystems (wetlands, meadows and forests) within a catchment located in seasonally frozen regions of the eastern Tibetan Plateau, including observations of soil profile temperature, topsoil moisture, and fluxes of methane (CH4) and nitrous oxide (N2O). The validation showed that the modified CNMM-DNDC was able to simulate the observed seasonal dynamics and magnitudes of the variables in the three typical alpine ecosystems, with index-of-agreement values of 0.91–1.00, 0.49–0.83, 0.57–0.88 and 0.26–0.47, respectively. Consistent with the emissions determined from the field observations, the simulated aggregate emissions of CH4 and N2O were highest for the wetland among three alpine ecosystems, which were dominated by the CH4 emissions. This study indicates the possibility for utilizing the process-oriented model CNMM-DNDC to predict hydro-biogeochemical processes, as well as related gas emissions, in seasonally frozen regions. As the original CNMM-DNDC was previously validated in some unfrozen regions, the modified CNMM-DNDC could be potentially applied to estimate the emissions of CH4 and N2O from various ecosystems under different climate zones at the site or catchment scale.

Funder

National Key Research and Development Program of China

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3