Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water

Author:

Carlton A. G.ORCID,Turpin B. J.

Abstract

Abstract. Gas-phase water-soluble organic matter (WSOMg) is ubiquitous in the troposphere. In the summertime, the potential for these gases to partition to particle-phase liquid water (H2Optcl) where they can form secondary organic aerosol (SOAAQ) is high in the Eastern US and low elsewhere, with the exception of an area near Los Angeles, CA. This spatial pattern is driven by mass concentrations of H2Optcl, not WSOMg. H2Optcl mass concentrations are predicted to be high in the Eastern US, largely due to sulfate. The ability of sulfate to increase H2Optcl is well established and routinely included in atmospheric models; however WSOMg partitioning to this water and subsequent SOA formation is not. The high mass concentrations of H2Optcl in the southeast (SE) US but not the Amazon may help explain why biogenic SOA mass concentrations are high in the SE US but low in the Amazon. Furthermore, during the summertime in the Eastern US, the potential for organic gases to partition into liquid water is greater than their potential to partition into organic matter (OM) because concentrations of WSOMg and H2Optcl are higher than semi-volatile gases and OM. Thus, unless condensed phase yields are substantially different (> ~ order of magnitude), we expect that SOA formed through aqueous-phase pathways (SOAAQ) will dominate in the Eastern US. These findings also suggest that H2Optcl is largely anthropogenic and provide a previously unrecognized mechanism by which anthropogenic pollutants impact the amount of SOA mass formed from biogenic organic emissions. The previously reported estimate of the controllable fraction of biogenic SOA in the Eastern US (50%) is likely too low.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3