Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California

Author:

Yates E. L.,Iraci L. T.,Roby M. C.,Pierce R. B.,Johnson M. S.,Reddy P. J.,Tadić J. M.,Loewenstein M.,Gore W.

Abstract

Abstract. Stratosphere-to-troposphere transport (STT) results in air masses of stratospheric origin intruding into the free troposphere. Once in the free troposphere, ozone (O3)-rich stratospheric air can be transported and mixed with tropospheric air masses, contributing to the tropospheric O3 budget. Evidence of STT can be identified based on the differences in the trace gas composition of the two regions. Because O3 is present in such large quantities in the stratosphere compared to the troposphere, it is frequently used as a tracer for STT events. This work reports on airborne in situ measurements of O3 and other trace gases during two STT events observed over California, USA. The first, on 14 May 2012, was associated with a cutoff low, and the second, on 5 June 2012, occurred during a post-trough, building ridge event. In each STT event, airborne measurements identified high O3 within the stratospheric intrusion, which were observed as low as 3 km above sea level. During both events the stratospheric air mass was characterized by elevated O3 mixing ratios and reduced carbon dioxide (CO2) and water vapor. The reproducible observation of reduced CO2 within the stratospheric air mass supports the use of non-conventional tracers as an additional method for detecting STT. A detailed meteorological analysis of each STT event is presented, and observations are interpreted with the Realtime Air Quality Modeling System (RAQMS). The implications of the two STT events are discussed in terms of the impact on the total tropospheric O3 budget and the impact on air quality and policy-making.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3