Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado
-
Published:2013-12-11
Issue:23
Volume:13
Page:11987-12001
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Schumacher C. J., Pöhlker C.ORCID, Aalto P., Hiltunen V., Petäjä T.ORCID, Kulmala M.ORCID, Pöschl U.ORCID, Huffman J. A.ORCID
Abstract
Abstract. Biological aerosol particles have become increasingly important for atmospheric study, but continuous measurements at high time and size resolution have not been available until recently. Here we report seasonal cycles of fluorescent biological aerosol particles (FBAP) from the boreal forest in Hyytiälä, Finland (18 months) and the semi-arid Manitou Experimental Forest, Colorado (10 months). FBAP at both locations were observed to be highest in summer and lowest in winter, increasing by factors of 12 and 5 between these seasons, respectively. In addition to the low temperatures and reduced sunlight during winter, we suggest that snow cover inhibited FBAP release from local terrestrial surfaces and that more extensive snow cover at the Finland site contributed to lower winter FBAP concentrations. Average size distributions at each site exhibited peaks between 1.5 and 6 μm in aerodynamic diameter. The Finland site consistently showed a dominant, narrow FBAP peak at ~ 3 μm in addition to discreet modes at ~ 1.5 and ~ 5 μm, whereas the Colorado site showed broader peaks at 1.5 and 5 μm, suggesting different modes of biological particles at the two sites. FBAP concentrations in both locations were shown to correlate with daily patterns of relative humidity (RH) during each season. Also during summer at each site, average FBAP concentration scaled with RH, but at the Finland site RH values above ~ 82% led to a significant decrease in FBAP concentration. We hypothesize that this is due to dew formation that inhibits bioparticle release. Lastly we show that rain during summer at each location led to pronounced increases in both fluorescent and total particle concentrations with FBAP peak particle size at ~ 2 μm and concentration scaling with rain intensity. We suggest that these particles are primarily fungal spores and other bioparticles lofted from splashing of rain droplets hitting soil and leaf surfaces. During the summer at the Colorado site we consistently observed a mode of ~ 4 μm particles appearing several hours after rain events that we suggest are fungal spores actively emitted when ambient conditions are most advantageous for spread and germination. The pronounced patterns of fluorescent bioparticles observed here suggest that parameterizations of both daily and seasonal cycles will be important to accurately reflect bioparticle emissions in future studies of atmospheric bioaerosols and their potential effects on clouds and precipitation.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference86 articles.
1. Aizawa, T. and Kosaka, H.: Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source, Int. J. Engine Res., 9, 79–97, 2008. 2. Allitt, U.: Airborne fungal spores and the thunderstorms of 24 June 1994, Aerobiologia, 16, 397–406, 2000. 3. Bones, D. L., Henricksen, D. K., Mang, S. A., Gonsior, M., Bateman, A. P., Nguyen, T. B., Cooper, W. J., and Nizkorodov, S. A.: Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales, J. Geophys. Res.-Atmos., 115, D05203, https://doi.org/10.1029/2009jd012864, 2010. 4. Brosseau, L. M., Vesley, D., Rice, N., Goodell, K., Nellis, M., and Hairston, P.: Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector, Aerosol Sci. Tech., 32, 545–558, 2000. 5. Burch, M. and Levetin, E.: Effects of meteorological conditions on spore plumes, Int. J. Biometeorol., 46, 107–117, https://doi.org/10.1007/s00484-002-0127-1, 2002.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|