Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

Author:

Cole A. S.ORCID,Steffen A.,Pfaffhuber K. A.,Berg T.,Pilote M.,Poissant L.,Tordon R.,Hung H.

Abstract

Abstract. Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM) from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada) and Zeppelin Station (Svalbard, Norway); one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada); and three temperate Canadian sites at St. Anicet (Québec), Kejimkujik (Nova Scotia) and Egbert (Ontario). Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0) at Alert and no trend (−0.5, +0.7) at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1) at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8) at St. Anicet, −1.6% yr−1 (−2.4, −1.0) at Kejimkujik and −2.2% yr−1 (−2.8, −1.7) at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral) overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM) and total particulate mercury (TPM) at Alert were also performed, indicating increases from 2002 to 2009 in both RGM and TPM in the spring when concentrations are highest.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference60 articles.

1. AMAP: Arctic Monitoring and Assessment Programme (AMAP) Assessment 2002: Heavy Metals in the Arctic, Oslo, Norway, 265 pp., 2005.

2. AMAP: AMAP Assessment 2011: Mercury in the Arctic, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norwayxiv, 193 pp., 2011.

3. AMAP/UNEP: Technical Background Report to the Global Atmospheric Mercury Assessment, Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch, 159 pp., 2008.

4. AMAP/Wilson, S., Munthe, J., Sundseth, K., Kindbom, K., Maxson, P., Pacyna, J., and Steenhuisen, F.: Updating historical global inventories of anthropogenic mercury emissions to air, AMAP Technical Report No. 3 (2010), Arctic Monitoring and Assessment Programme, Oslo, Norway, 2010.

5. Andersson, M. E., Sommar, J., Gårdfeldt, K., and Lindqvist, O.: Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean, Mar. Chem., 110, 190–194, 2008.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3