Receptor modelling of secondary and carbonaceous particulate matter at a southern UK site
-
Published:2013-02-19
Issue:4
Volume:13
Page:1879-1894
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Charron A., Degrendele C., Laongsri B., Harrison R. M.ORCID
Abstract
Abstract. Complementary approaches have been taken to better understand the sources and their spatial distribution for secondary inorganic (nitrate and sulphate) and secondary organic aerosol sampled at a rural site (Harwell) in the southern United Kingdom. A concentration field map method was applied to 1581 daily samples of chloride, nitrate and sulphate from 2006 to 2010, and 982 samples for organic carbon and elemental carbon from 2007 to 2010. This revealed a rather similar pattern of sources for nitrate, sulphate and secondary organic carbon within western/central Europe, which in the case of nitrate, sulphate, organic carbon and secondary organic carbon, correlated significantly with EMEP emissions maps of NOx, SO2, and VOC respectively. A slightly more southerly source emphasis for secondary organic carbon may reflect the contribution of biogenic sources. Trajectory clusters confirm this pattern of behaviour with a major contribution from mainland European sources. Similar behaviours of, on the one hand, sulphate and organic carbon and, on the other hand, EC and nitrate showed that the former are more subject to regional influence than the latter in agreement with the slower atmospheric formation of sulphate and secondary organic aerosol than for nitrate, and the local/mesoscale influences upon primary EC. However, careful analysis of back trajectories and Concentration Field Maps indicates a strong contribution of mainland European sites to EC concentrations at Harwell. In a separate study, measurements of sulphate, nitrate, elemental and organic carbon were made in 100 simultaneously collected samples at Harwell and at a suburban site in Birmingham (UK). This showed a significant correlation in concentrations between the two sites for all of the secondary constituents, further indicating secondary organic aerosol to be a regional pollutant behaving similarly to sulphate and nitrate.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference39 articles.
1. Abdalmogith, S. and Harrison, R. M.: The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK, Atmos. Environ., 39, 6686–6695, 2005. 2. Artíñano, B. S. P., Alonso, D. G., Querol, X., and Alastuey, A.: Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain), Sci. Tot. Environ., 334–335, 111–123, 2004. 3. Ashbaugh, L. L.: A statistical trajectory technique for determining air pollution source regions, J. Air Pollut. Control Assoc., 33, 1096–1098, 1983. 4. Cape, J. M., Coyle, M., and Dumitrean, P.: The atmospheric lifetime of black carbon, Atmos. Environ., 59, 256–263, 2012. 5. Carbone, C., Decesari, S., Mircea, M., Giulianelli, L., Finessi, E., Rinaldi, M., Fuzzi, S., Marinoni, A., Duchi, R., Perrino, C., Sargolini, T., Vardè, M., Sprovieri, F., Gobbi, G. P., Angelini, F., and Facchini, M. C.: Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions, Atmos. Environ., 44, 5269–5278, 2010
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|