Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

Author:

Fang Y.,Naik V.,Horowitz L. W.,Mauzerall D. L.

Abstract

Abstract. Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3) to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8) million cardiopulmonary mortalities and 95 (95% CI, 44–144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129–592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also contribute to premature mortality associated with air pollution globally (by up to 5% and 15%, respectively). In some regions, the contribution of climate change and increased CH4 together are responsible for more than 20% of the respiratory mortality associated with O3 exposure. We find the interaction between climate change and atmospheric chemistry has influenced atmospheric composition and human mortality associated with industrial air pollution. Our study highlights the benefits to air quality and human health of CH4 mitigation as a component of future air pollution control policy.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference68 articles.

1. Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A., Kumar, N., and Kearney, A. T.: Carbon dioxide emissions from fossil-fuel use, 1751–1950, Tellus B, 51, 759–765, https://doi.org/10.1034/j.1600-0889.1999.t01-3-00002.x, 1999.

2. Anenberg, S. C., West, J. J., Fiore, A. M., Jaffe, D. A., Prather, M. J., Bergmann, D., Cuvelier, C., Dentener, F. J., Duncan, B. N., Gauss, M., Hess, P., Jonson, J. E., Lupu, A., MacKenzie, I. A., Marmer, E., Park, R. J., Sanderson, M., Schultz, M., Shindell, D. T., Szopa, S., Garcia Vivanco, M., Wild, O., and Zeng, G.: Intercontinental impacts of ozone pollution on human mortality, Environ. Sci. Technol., 43, 6482–6487, 2009.

3. Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling, Environ. Health Perspect., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010.

4. Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Maenhout, G., Pozzoli, L., van Dingenen, R., Vignati, E., Emberson, L., Muller, N. Z., West, J. J., Williams, M., Demkine, V., Hicks, W. K., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, Environ. Health Perspect., 120, 831–839, 2012.

5. Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.: Ozone and Short-term Mortality in 95 US Urban Communities, 1987–2000, JAMA: The Journal of the American Medical Association, 292, 2372–2378, https://doi.org/10.1001/jama.292.19.2372, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3