Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere
-
Published:2013-11-13
Issue:21
Volume:13
Page:11059-11071
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wintel J., Hösen E., Koppmann R., Krebsbach M.ORCID, Hofzumahaus A., Rohrer F.
Abstract
Abstract. During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer (PBL) and the lower free troposphere (LFT) over south-west Germany using the ZEppelin Based Isotope Sampler (ZEBIS). These samples were analysed with respect to volatile organic compound (VOC) mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS). In this study we present results for toluene, one of the major anthropogenic pollutants, which emphasise the viability of isotope ratio measurements in VOC for atmospheric research, especially to study VOC sources or to track both dynamical and chemical processes. In situ measurements of CO mixing ratios on board the Zeppelin NT were used to allocate the air samples either to the PBL or the LFT. In the PBL we observed rather fresh emissions mixing into the background air. We estimated a toluene source isotope ratio of δ13C = −28.2 ± 0.5‰. Samples from the PBL and the LFT were clearly distinguishable by means of their mixing ratio and isotope ratio signatures. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We calculated the photochemical age of toluene in the atmosphere in two different ways using isotope ratios and mixing ratios. The results differ strongly in the PBL, probably due to mixing processes, but are compatible with each other in the LFT. Here, they correlate with a slope of 0.90±0.31.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Anderson, R., Czuba, E., Ernst, D., Huang, L., Thompson, A., and Rudolph, J.: Method for measuring carbon kinetic isotope effects of gas-phase reactions of light hydrocarbons with the hydroxyl radical, J. Phys. Chem. A, 107, 6191–6199, https://doi.org/10.1021/jp034256d, 2003. 2. Anderson, R., Iannone, R., Thompson, A., Rudolph, J., and Huang, L.: Carbon kinetic isotope effects in the gas-phase reactions of aromatic hydrocarbons with the OH radical at $296± 4$ K, Geophys. Res. Lett., 31, L15108, https://doi.org/10.1029/2004GL020089, 2004a. 3. Anderson, R., Huang, L., Iannone, R., Thompson, A., and Rudolph, J.: Carbon kinetic isotope effects in the gas phase reactions of light alkanes and ethene with the OH radical at $296± 4$ K, J. Phys. Chem. A, 108, 11537–11544, https://doi.org/10.1021/jp0472008, 2004b. 4. Anderson, R.: Carbon kinetic isotope effects in the gas-phase reactions of nonmethane hydrocarbons with hydroxyl radicals and chlorine atoms, Ph.D. thesis, York University, Toronto, Canada, 2005. 5. Atkinson, R. and Lloyd, A.: Evaluation of kinetic and mechanistic data for modelling of photochemical smog, J. Phys. Chem. Ref. Data, 13, 315–444, https://doi.org/10.1063/1.555710, 1984.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|