Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride
-
Published:2013-12-03
Issue:23
Volume:13
Page:11723-11734
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
You Y.ORCID, Renbaum-Wolff L., Bertram A. K.ORCID
Abstract
Abstract. As the relative humidity varies from high to low values in the atmosphere, particles containing organic species and inorganic salts may undergo liquid–liquid phase separation. The majority of the laboratory work on this subject has used ammonium sulfate as the inorganic salt. In the following we studied liquid–liquid phase separation in particles containing organics mixed with the following salts: ammonium sulfate, ammonium bisulfate, ammonium nitrate and sodium chloride. In each experiment one organic was mixed with one inorganic salt and the liquid–liquid phase separation relative humidity (SRH) was determined. Since we studied 23 different organics mixed with four different salts, a total of 92 different particle types were investigated. Out of the 92 types, 49 underwent liquid–liquid phase separation. For all the inorganic salts, liquid–liquid phase separation was never observed when the oxygen-to-carbon elemental ratio (O : C) &geq; 0.8 and was always observed for O : C < 0.5. For 0.5 &leq; O : C < 0.8, the results depended on the salt type. Out of the 23 organic species investigated, the SRH of 20 organics followed the trend: (NH4)2SO4 &geq; NH4HSO4 &geq; NaCl &geq; NH4NO3. This trend is consistent with previous salting out studies and the Hofmeister series. Based on the range of O : C values found in the atmosphere and the current results, liquid–liquid phase separation is likely a frequent occurrence in both marine and non-marine environments.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference97 articles.
1. Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O.: Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation, Science, 313, 1770–1773, https://doi.org/10.1126/science.1129726, 2006. 2. Adams, P. J., Seinfeld, J. H., and Koch, D. M.: Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res.-Atmos., 104, 13791–13823, https://doi.org/10.1029/1999jd900083, 1999. 3. Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., and Jacob, D.: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J. Geophys. Res.-Atmos., 106, 1097–1111, https://doi.org/10.1029/2000JD900512, 2001. 4. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O / C and OM / OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008. 5. Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5, J. Phys. Chem. A, 110, https://doi.org/10.1021/jp062403c 10435–10443, 2006.
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|