Kinetic fractionation of gases by deep air convection in polar firn

Author:

Kawamura K.ORCID,Severinghaus J. P.ORCID,Albert M. R.,Courville Z. R.,Fahnestock M. A.,Scambos T.ORCID,Shields E.,Shuman C. A.ORCID

Abstract

Abstract. A previously unrecognized type of gas fractionation occurs in firn air columns subjected to intense convection. It is a form of kinetic fractionation that depends on the fact that different gases have different molecular diffusivities. Convective mixing continually disturbs diffusive equilibrium, and gases diffuse back toward diffusive equilibrium under the influence of gravity and thermal gradients. In near-surface firn where convection and diffusion compete as gas transport mechanisms, slow-diffusing gases such as krypton (Kr) and xenon (Xe) are more heavily impacted by convection than fast diffusing gases such as nitrogen (N2) and argon (Ar), and the signals are preserved in deep firn and ice. We show a simple theory that predicts this kinetic effect, and the theory is confirmed by observations using a newly-developed Kr and Xe stable isotope system in air samples from the Megadunes field site on the East Antarctic plateau. Numerical simulations confirm the effect's magnitude at this site. A main purpose of this work is to support the development of a proxy indicator of past convection in firn, for use in ice-core gas records. To this aim, we also show with the simulations that the magnitude of the kinetic effect is fairly insensitive to the exact profile of convective strength, if the overall thickness of the convective zone is kept constant. These results suggest that it may be feasible to test for the existence of an extremely deep (~30–40 m) convective zone, which has been hypothesized for glacial maxima, by future ice-core measurements.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3