On the possibilities to use atmospheric reanalyses to evaluate the warming structure in the Arctic

Author:

Chung C. E.ORCID,Cha H.,Vihma T.ORCID,Räisänen P.ORCID,Decremer D.

Abstract

Abstract. There has been growing interest in the vertical structure of the recent Arctic warming. We investigated temperatures at the surface, 925, 700, 500 and 300 hPa levels in the Arctic (north of 70° N) using observations and four reanalyses: ERA-Interim, CFSR, MERRA and NCEP II. For the period 1979–2011, the layers at 500 hPa and below show a warming trend in all seasons in all the chosen reanalyses and observations. Restricting the analysis to the 1998–2011 period, however, all the reanalyses show a cooling trend in the Arctic-mean 500 hPa temperature in autumn, and this also applies to both observations and the reanalyses when restricting the analysis to the locations with available IGRA radiosoundings. During this period, the surface observations mainly representing land areas surrounding the Arctic Ocean reveal no summertime trend, in contrast with the reanalyses whether restricted to the locations of the available surface observations or not. In evaluating the reanalyses with observations, we find that the reanalyses agree better with each other at the available IGRA sounding locations than for the Arctic average, perhaps because the sounding observations were assimilated into reanalyses. Conversely, using the reanalysis data only from locations matching available surface (air) temperature observations does not improve the agreement between the reanalyses. At 925 hPa, CFSR deviates from the other three reanalyses, especially in summer after 2000, and it also deviates more from the IGRA radiosoundings than the other reanalyses do. The CFSR error in summer T925 is due mainly to underestimations in the Canadian-Atlantic sector between 120° W and 0°. The other reanalyses also have negative biases in this longitude band.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3