A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions

Author:

Chudnovsky A.,Tang C.,Lyapustin A.ORCID,Wang Y.,Schwartz J.,Koutrakis P.

Abstract

Abstract. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the MODerate Resolution Imaging Spectroradiometer (MODIS), which provides aerosol optical depth (AOD) at 1 km resolution. The relationship between MAIAC AOD and PM2.5 as measured by 84 EPA ground monitoring stations in the entire New England and the Harvard super site during 2002–2008 was investigated and also compared to the AOD–PM2.5 relationship using conventional MODIS 10 km AOD retrieval from Aqua platform (MYD04) for the same days and locations. The correlations for MYD04 and for MAIAC are r = 0.62 and 0.65, respectively, suggesting that AOD is a reasonable proxy for PM2.5 ground concentrations. The slightly higher correlation coefficient (r) for MAIAC can be related to its finer resolution resulting in better correspondence between AOD and EPA monitoring sites. Regardless of resolution, AOD–PM2.5 relationship varies daily, and under certain conditions it can be negative (due to several factors such as an EPA site location (proximity to road) and the lack of information about the aerosol vertical profile). By investigating MAIAC AOD data, we found a substantial increase, by 50–70% in the number of collocated AOD–PM2.5 pairs, as compared to MYD04, suggesting that MAIAC AOD data are more capable in capturing spatial patterns of PM2.5. Importantly, the performance of MAIAC AOD retrievals is slightly degraded but remains reliable under partly cloudy conditions when MYD04 data are not available, and it can be used to increase significantly the number of days for PM2.5 spatial pattern prediction based on satellite observations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3