Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US
-
Published:2018-11-29
Issue:12
Volume:11
Page:6379-6388
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Sheng Jian-XiongORCID, Jacob Daniel J., Maasakkers Joannes D., Zhang YuzhongORCID, Sulprizio Melissa P.
Abstract
Abstract. We conduct Observing System Simulation Experiments (OSSEs)
to compare the ability of future satellite measurements of atmospheric
methane columns (TROPOMI, GeoCARB, GEO-CAPE) for constraining methane
emissions down to the 25 km scale through inverse analyses. The OSSE uses the
GEOS-Chem chemical transport model (0.25∘×0.3125∘ grid
resolution) in a 1-week simulation for the Southeast US with 216 emission
elements to be optimized through inversion of synthetic satellite
observations. Clouds contaminate 73 %–91 % of the viewing scenes depending on
pixel size. Comparison of GEOS-Chem to Total Carbon Column Observing Network (TCCON) surface-based methane column
observations indicates a model transport error standard deviation of 12 ppb,
larger than the instrument errors when aggregated on the 25 km model grid
scale, and with a temporal error correlation of 6 h. We find that TROPOMI
(7×7 km2 pixels, daily return time) can provide a coarse regional
optimization of methane emissions, comparable to results from an aircraft
campaign (SEAC4RS), and is highly sensitive to cloud cover. The
geostationary instruments can do much better and are less sensitive to cloud
cover, reflecting both their finer pixel resolution and more frequent
observations. The information content from GeoCARB toward constraining
methane emissions increases by 20 %–25 % for each doubling of the GeoCARB
measurement frequency. Temporal error correlation in the transport model
moderates but does not cancel the benefit of more frequent measurements for
geostationary instruments. We find that GeoCARB observing twice a day would
provide 70 % of the information from the nominal GEO-CAPE mission
preformulated by NASA in response to the Decadal Survey of the US National
Research Council.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O.,
Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A.,
Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse
modelling of CH4 emissions for 2010–2011 using different satellite
retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15,
113–133, https://doi.org/10.5194/acp-15-113-2015, 2015. a 2. Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse modeling
analysis using SCIAMACHY satellite retrievals and NOAA surface
measurements, J. Geophys. Res.-Atmos., 118, 7350–7369,
https://doi.org/10.1002/jgrd.50480,
2013. a 3. Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden,
J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland
methane emissions and uncertainty dataset for atmospheric chemical transport
models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156,
https://doi.org/10.5194/gmd-10-2141-2017, 2017. a, b, c 4. Bousquet, P., Pierangelo, C., Bacour, C., Marshall, J., Peylin, P., Ayar,
P. V., Ehret, G., Bréon, F.-M., Chevallier, F., Crevoisier, C., Gibert, F.,
Rairoux, P., Kiemle, C., Armante, R., Bès, C., Cassé, V., Chinaud, J.,
Chomette, O., Delahaye, T., Edouart, D., Estève, F., Fix, A., Friker, A.,
Klonecki, A., Wirth, M., Alpers, M., and Millet, B.: Error budget of the
MEthane Remote LIdar missioN (MERLIN) and its impact on the
uncertainties of the global methane budget, J. Geophys. Res.-Atmos., online first, https://doi.org/10.1029/2018JD028907,
2018. a 5. Bousserez, N., Henze, D. K., Rooney, B., Perkins, A., Wecht, K. J., Turner,
A. J., Natraj, V., and Worden, J. R.: Constraints on methane emissions in
North America from future geostationary remote-sensing measurements, Atmos.
Chem. Phys., 16, 6175–6190, https://doi.org/10.5194/acp-16-6175-2016, 2016. a, b, c
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|