Uncertainties in estimating regional methane emissions from rice paddies due to data scarcity in the modeling approach

Author:

Zhang W.ORCID,Zhang Q.,Huang Y.,Li T. T.,Bian J. Y.,Han P. F.

Abstract

Abstract. Rice paddies are a major anthropogenic source of the atmospheric methane. However, because of the high spatial heterogeneity, making accurate estimations of the methane emission from rice paddies is still a big challenge, even with complicated models. Data scarcity is one of the substantial causes of the uncertainties in estimating the methane emissions on regional scales. In the present study, we discussed how data scarcity affected the uncertainties in model estimations of rice paddy methane emissions, from county/provincial scale up to national scale. The uncertainties in methane emissions from the rice paddies of China was calculated with a local-scale model and the Monte Carlo simulation. The data scarcities in five of the most sensitive model variables, field irrigation, organic matter application, soil properties, rice variety and production were included in the analysis. The result showed that in each individual county, the within-cell standard deviation of methane flux, as calculated via Monte Carlo methods, was 13.5–89.3% of the statistical mean. After spatial aggregation, the national total methane emissions were estimated at 6.44–7.32 Tg, depending on the base scale of the modeling and the reliability of the input data. And with the given data availability, the overall aggregated standard deviation was 16.3% of the total emissions, ranging from 18.3–28.0% for early, late and middle rice ecosystems. The 95% confidence interval of the estimation was 4.5–8.7 Tg by assuming a gamma distribution. Improving the data availability of the model input variables is expected to reduce the uncertainties significantly, especially of those factors with high model sensitivities.

Publisher

Copernicus GmbH

Reference42 articles.

1. Aumann, G., Ebner, H., and Tang, L.: Automatic derivation of skeleton lines from digitized contours. J. Photogr. Remote Sens., 46, 259–268, 1991.

2. Cai, Z. C.: A category for estimate of CH4 emission from rice paddy fields in China, Nutr. Cycl. Agroecosys., 49, 171–179, 1997.

3. Commission of The First National Pollution Source Census Data Compilation of China (CFPC): Datasets of China Pollution Source Census, China Environmental Science Press, Beijing, China, 2011.

4. Editorial Board of China Agriculture Yearbook (EBCAY): China Agriculture Yearbook, China Agriculture Press, Beijing, China, 2011.

5. Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., and Qin, X.: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China, Global Biogeochem. Cy., 16, 1091, https://doi.org/10.1029/2001GB001425, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3