A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)

Author:

Pfeiffer M.,Spessa A.,Kaplan J. O.ORCID

Abstract

Abstract. Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases including CO2, CO, CH4, NOx, and aerosols. One way of assessing the impacts of global wildfire on centennial to multi-millennial timescales is to use process-based fire models linked to dynamic global vegetation models (DGVMs). Here we present an update to the LPJ-DGVM and a new fire module based on SPITFIRE that includes several improvements to the way in which fire occurrence, behaviour, and the effects of fire on vegetation are simulated. The new LPJ-LMfire model includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires, and the calculation of rates of spread in different vegetation types. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the different relationships between humans and fire among hunter-gatherers, pastoralists, and farmers. We evaluate our model simulations against remote-sensing-based estimates of burned area at regional and global scale. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process (e.g. in remote areas of the boreal forest and subarctic), our results demonstrate a significant improvement in simulated burned area over the original SPITFIRE. The new fire model we present here is particularly suited for the investigation of climate–human–fire relationships on multi-millennial timescales prior to the Industrial Revolution.

Publisher

Copernicus GmbH

Reference232 articles.

1. Ahlenius, H.: Human impact, year 2002 (Miller cylindrical projection), GLOBIO-2 model, http://www.grida.no/graphicslib/detail/human-impact-year-2002-miller-cylindrical-projection_7006, last access: 10 May 2013, 2005.

2. Akanvou, R., Becker, M., Chano, M., Johnson, D. E., Gbaka-Tcheche, H., and Toure, A.: Fallow residue management effects on upland rice in three agroecological zones of West Africa, Biol. Fert. Soils, 31, 501–507, https://doi.org/10.1007/s003740000199, 2000.

3. Akselsson, C., B., B., Meentemeyer, V., and Westling, O.: Carbon sequestration rates in organic layers of boreal and temperate forest soils – Sweden as a case study, Global Ecol. Biogeogr., 14, 77–84, 2005.

4. Alaska Bureau of Land Management: Alaska Lightning Detection System, http://afsmaps.blm.gov/imf/imf.jsp?site=lightning(last access: 10 May 2013), 2013.

5. Alaska Fire Service: Alaska Fire Service polygon maps of burned area, http://afsmaps.blm.gov/imf/imf.jsp?site=firehistory(last access: 10 May 2013), 2013.

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3