GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model

Author:

Zhang Dejian,Lin Bingqing,Wu Jiefeng,Lin Qiaoying

Abstract

Abstract. High-fidelity and large-scale hydrological models are increasingly used to investigate the impacts of human activities and climate change on water availability and quality. However, the detailed representations of real-world systems and processes contained in these models inevitably lead to prohibitively high execution times, ranging from minutes to days. Such models become computationally prohibitive or even infeasible when large iterative model simulations are involved. In this study, we propose a generic two-level (i.e., watershed- and subbasin-level) model parallelization schema to reduce the run time of computationally expensive model applications through a combination of model spatial decomposition and the graph-parallel Pregel algorithm. Taking the Soil and Water Assessment Tool (SWAT) as an example, we implemented a generic tool named GP-SWAT, enabling watershed-level and subbasin-level model parallelization on a Spark computer cluster. We then evaluated GP-SWAT in two sets of experiments to demonstrate the ability of GP-SWAT to accelerate single and iterative model simulations and to run in different environments. In each test set, GP-SWAT was applied for the parallel simulation of four synthetic hydrological models with different input/output (I/O) burdens. The single-model parallelization results showed that GP-SWAT can obtain a 2.3–5.8-times speedup. For multiple simulations with subbasin-level parallelization, GP-SWAT yielded a remarkable speedup of 8.34–27.03 times. In both cases, the speedup ratios increased with an increasing computation burden. The experimental results indicate that GP-SWAT can effectively solve the high-computational-demand problems of the SWAT model. In addition, as a scalable and flexible tool, it can be run in diverse environments, from a commodity computer running the Microsoft Windows operating system to a Spark cluster consisting of a large number of computational nodes. Moreover, it is possible to apply this generic tool to other subbasin-based hydrological models or even acyclic models in other domains to alleviate I/O demands and to optimize model computational performance.

Funder

Natural Science Foundation of Fujian Province

Xiamen University of Technology

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3