Sensitivity analysis of polarimetric O<sub>2</sub> A-band spectra for potential cloud retrievals using OCO-2/GOSAT measurements

Author:

Sanghavi S.,Lebsock M.,Stephens G.

Abstract

Abstract. Clouds play a crucial role in Earth's radiative budget, yet their climate feedbacks are poorly understood. The advent of space-borne high resolution spectrometers probing the O2 A band, like GOSAT and OCO-2, could make it possible to simultaneously retrieve vertically resolved cloud parameters that play a vital role in Earth's radiative budget, thereby allowing a reduction of the corresponding uncertainty due to clouds. Such retrievals would also facilitate air mass bias reduction in corresponding measurements of CO2 columns. In this work, the hyperspectral, polarimetric response of the O2 A band to mainly three important cloud parameters, viz., optical thickness, top height and droplet size has been studied, revealing a different sensitivity to each for the varying atmospheric absorption strength within the A band. Cloud optical thickness finds greatest sensitivity in intensity measurements, the sensitivity of other Stokes parameters being limited to low cloud optical thicknesses. Cloud height had a negligible effect on intensity measurements at non-absorbing wavelengths but finds maximum sensitivity at an intermediate absorption strength, which increases with cloud height. The same is found to hold for cloud geometric thickness. The geometry-dependent sensitivity to droplet size is maximum at non-absorbing wavelengths and diminishes with increasing absorption strength. It has been shown that significantly more information on droplet size can be drawn from multi-angle measurements. We find that, in the absence of sunglint, the backscatter hemisphere (scattering angle larger than 90°) is richer in information on droplet size, especially in the glory and rainbow regions. It has been shown that I and Q generally have differing sensitivities to all cloud parameters. Thus, accurate measurements of two orthogonal components IP andIS (as in GOSAT) are expected to contain more information than measurements of only I, Ih or Iv (as in the case of OCO-2).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Abreu, L. and Anderson, G.: The MODTRAN 2/3 report and LOWTRAN 7 model, Contract, 19628, 0132, 1996.

2. Ackerman, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and McGill, M.: Cloud detection with MODIS. Part II: validation, J. Atmos. Ocean. Tech., 25, 1073–1086, 2008.

3. Anderson, G. P., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Tech. rep., DTIC Document, 1986.

4. Baker, M.: Cloud microphysics and climate, Science, 276, 1072–1078, 1997.

5. Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh optical depth calculations., J. Atmos. Ocean. Tech., 16, 1854–1861, 1999.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3