Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)

Author:

Bratek Alexander,van Beusekom Justus E. E.,Neumann AndreasORCID,Sanders Tina,Friedrich Jana,Emeis Kay-Christian,Dähnke Kirstin

Abstract

Abstract. In this study, we investigate the role of sedimentary N cycling in the southern North Sea. We present a budget of ammonification, nitrification and sedimentary NO3- consumption and denitrification in contrasting sediment types of the German Bight (southern North Sea), including novel net ammonification rates. We incubated sediment cores from four representative locations in the German Bight (permeable, semi-permeable and impermeable sediments) with labeled nitrate and ammonium to calculate benthic fluxes of nitrate and ammonium and gross rates of ammonification and nitrification. Ammonium fluxes generally suggest oxic degradation of organic matter, but elevated fluxes at one sampling site point towards the importance of bioirrigation or short-term accumulation of organic matter. Sedimentary fluxes of dissolved inorganic nitrogen are an important source for primary producers in the water column, supporting ∼7 % to 59 % of the average annual primary production, depending on water depth. We find that ammonification and oxygen penetration depth are the main drivers of sedimentary nitrification, but this nitrification is closely linked to denitrification. One-third of freshly produced nitrate in impermeable sediment and two-thirds in permeable sediment were reduced to N2. The semi-permeable and permeable sediments are responsible for ∼68 % of the total benthic N2 production rates, which, based solely on our data, amounts to ∼1030 t N d−1 in the southern North Sea. Thus, we conclude that semi-permeable and permeable sediments are the main sinks of reactive N, counteracting eutrophication in the southern North Sea (German Bight).

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3