Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
-
Published:2023-04-28
Issue:8
Volume:20
Page:1671-1690
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Turner Katherine E.ORCID, Smith Doug M., Katavouta AnnaORCID, Williams Richard G.ORCID
Abstract
Abstract. The ocean carbon store plays a vital role in setting the carbon response to emissions and variability in the carbon cycle. However, due to the ocean's strong regional and temporal variability, sparse carbon observations limit our understanding of historical carbon changes.
Ocean temperature and salinity profiles are more widespread and rapidly expanding due to autonomous programmes, and so we explore how temperature and salinity profiles can provide information to reconstruct ocean carbon inventories with ensemble optimal interpolation. Here, ensemble optimal interpolation is used to reconstruct ocean carbon using synthetic Argo temperature and salinity observations, with examples for both the top 100 m and top 2000 m carbon inventories.
When considering reconstructions of the top 100 m carbon inventory, coherent relationships between upper-ocean carbon, temperature, salinity, and atmospheric CO2 result in optimal solutions that reflect the controls of undersaturation, solubility, and alkalinity.
Out-of-sample reconstructions of the top 100 m show that, in most regions, the trend in ocean carbon and over 60 % of detrended variability can be reconstructed using local temperature and salinity measurements, with only small changes when considering synthetic profiles consistent with irregular Argo sampling.
Extending the method to reconstruct the upper 2000 m reveals that model uncertainties at depth limit the reconstruction skill.
The impact of these uncertainties on reconstructing the carbon inventory over the upper 2000 m is small, and full reconstructions with historical Argo locations show that the method can reconstruct regional inter-annual and decadal variability.
Hence, optimal interpolation based on model relationships combined with hydrographic measurements can provide valuable information about global ocean carbon inventory changes.
Funder
Department for Business, Energy and Industrial Strategy, UK Government Department for Environment, Food and Rural Affairs, UK Government Natural Environment Research Council Leverhulme Research Centre for Functional Materials Design
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference51 articles.
1. Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L., Killick, R. E.,
Rayner, N. A., Smith, D. M., and Andrews, M. B.: Towards quantifying
uncertainty in ocean heat content changes using synthetic profiles,
Environ. Res. Lett., 14, 084037, https://doi.org/10.1088/1748-9326/ab2b0b,
2019. a, b, c 2. Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a 3. Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and
Santana-Casiano, J. M.: A Time-Series View of Changing Ocean Chemistry Due to
Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography,
27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. a 4. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes, J.,
Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C., Fairhead,
L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S., Gastineau, G.,
Ghattas, J., Grandpeix, J., Guenet, B., Guez, E., L., Guilyardi, E.,
Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S.,
Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C.,
Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.,
Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J.,
Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C.,
Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D.,
Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J.,
Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL‐CM6A‐LR Climate Model, J. Adv. Model.
Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a 5. Bourgeois, T., Goris, N., Schwinger, J., and Tjiputra, J. F.: Stratification
constrains future heat and carbon uptake in the Southern Ocean between 30∘ S
and 55∘ S, Nat. Commun., 13, 1–8, 2022. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|