Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

Author:

Porada PhilippORCID,Ekici AltugORCID,Beer ChristianORCID

Abstract

Abstract. Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg). The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will be the basis for an improved future projection of land–atmosphere heat and carbon exchange.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3