Processes contributing to cloud dissipation and formation events on the North Slope of Alaska

Author:

Sedlar JosephORCID,Igel AdeleORCID,Telg Hagen

Abstract

Abstract. Clear-sky periods across the high latitudes have profound impacts on the surface energy budget and lower atmospheric stratification; however an understanding of the atmospheric processes leading to low-level cloud dissipation and formation events is limited. A method to identify clear periods at Utqiaġvik (formerly Barrow), Alaska, during a 5-year period (2014–2018) is developed. A suite of remote sensing and in situ measurements from the high-latitude observatory are analyzed; we focus on comparing and contrasting atmospheric properties during low-level (below 2 km) cloud dissipation and formation events to understand the processes controlling clear-sky periods. Vertical profiles of lidar backscatter suggest that aerosol presence across the lower atmosphere is relatively invariant during the periods bookending clear conditions, which suggests that a sparsity of aerosol is not frequently a cause for cloud dissipation on the North Slope of Alaska. Further, meteorological analysis indicates two active processes ongoing that appear to support the formation of low clouds after a clear-sky period: namely, horizontal advection, which was dominant in winter and early spring, and quiescent air mass modification, which was dominant in the summer. During summer, the dominant mode of cloud formation is a low cloud or fog layer developing near the surface. This low cloud formation is driven largely by air mass modification under relatively quiescent synoptic conditions. Near-surface aerosol particles concentrations changed by a factor of 2 around summer formation events. Thermodynamic adjustment and increased aerosol presence under quiescent atmospheric conditions are hypothesized as important mechanisms for fog formation.

Funder

Office of Science

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference72 articles.

1. ARM: ceil, available at: https://adc.arm.gov/discovery/#/results/s::nsaceilC1.b1 (last access: 21 May 2019), 2019a.

2. ARM: hsrl, available at: https://adc.arm.gov/discovery/#/results/s::nsahsrlC1.a1 (last access: 21 May 2019), 2019b.

3. ARM: arsclkazr1kollias, available at: https://adc.arm.gov/discovery/#/results/s::nsaarsclkazr1kolliasC1 (last access: 18 July 2019), 2019c.

4. ARM: radflux1long, available at: https://adc.arm.gov/discovery/#/results/datastream::nsaradflux1longC1.c1 (last access: 22 May 2019), 2019d.

5. ARM: sondewnpn, available at: https://adc.arm.gov/discovery/#/results/s::nsasondewnpnC1.b1 (last access: 4 September 2019), 2019e.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3